Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If f(x) = ∫x0 t(sin x-sin t)dt then

A

f(x)+f(x)=sinxf '''(x)+f ''(x)=\sin x

B

f(x)+f(x)f(x)=cosxf '''(x)+f''(x)-f (x)=\cos x

C

f(x)+f(x)=cosx2xsinxf'''(x)+f '(x)=\cos x-2x \sin x

D

f(x)f(x)=cosx2xsinxf '''(x)-f ''(x)=\cos x-2x \sin x

Answer

f(x)+f(x)=cosx2xsinxf'''(x)+f '(x)=\cos x-2x \sin x

Explanation

Solution

f(x)=0xt(sinxsint)dtf\left(x\right) = \int^{^x}_{_0}t\left(sin\,x - sin\,t\right)dt
f(x)=sinx0xtdt0xtsintdtf\left(x\right) = sinx \int^{^x}_{_0}t\,dt - \int^{^x}_{_0} t \,sin\,tdt
f(x)=(sinx)x+cosx0xtdtxsinxf'\left(x\right) = \left(sinx\right) x +cosx \int^{^x}_{_0} t \,dt-x\,sinx
f(x)=cosx0xtdtf'\left(x\right) = cosx \int^{^x}_{_0} tdt = xcosxx\cos x
f(x)=(cosx)x(sinx)0xtdtf''\left(x\right) = \left(cosx\right) x - \left(sinx\right) \int^{^x}_{_0} tdt
f(x)=x(sinx)+cosx(sinx)x(cosx)0xtdtf'''\left(x\right) = x\left(-sinx\right) + cosx-\left(sinx\right)x-\left(cosx\right) \int^{^x}_{_0} tdt
f(x)+f(x)=cosx2xsinxf'''\left(x\right)+f'\left(x\right) = cosx-2x\,sinx