Question
Mathematics Question on Integrals of Some Particular Functions
If f(x) = ∫x0 t(sin x-sin t)dt then
A
f′′′(x)+f′′(x)=sinx
B
f′′′(x)+f′′(x)−f(x)=cosx
C
f′′′(x)+f′(x)=cosx−2xsinx
D
f′′′(x)−f′′(x)=cosx−2xsinx
Answer
f′′′(x)+f′(x)=cosx−2xsinx
Explanation
Solution
f(x)=∫0xt(sinx−sint)dt
f(x)=sinx∫0xtdt−∫0xtsintdt
f′(x)=(sinx)x+cosx∫0xtdt−xsinx
f′(x)=cosx∫0xtdt = xcosx
f′′(x)=(cosx)x−(sinx)∫0xtdt
f′′′(x)=x(−sinx)+cosx−(sinx)x−(cosx)∫0xtdt
f′′′(x)+f′(x)=cosx−2xsinx