Solveeit Logo

Question

Question: If f(x) = x + tan x and f is the inverse of g, then g’(x) is equal to \[\left( \text{a} \right)\t...

If f(x) = x + tan x and f is the inverse of g, then g’(x) is equal to
(a) 11+[g(x)x]2\left( \text{a} \right)\text{ }\dfrac{1}{1+{{\left[ g\left( x \right)-x \right]}^{2}}}
(b) 12[g(x)+x]2\left( \text{b} \right)\text{ }\dfrac{1}{2-{{\left[ g\left( x \right)+x \right]}^{2}}}
(c) 12+[xg(x)]2\left( \text{c} \right)\text{ }\dfrac{1}{2+{{\left[ x-g\left( x \right) \right]}^{2}}}
(d) None of these

Explanation

Solution

Hint: To solve the given question, we will first find out what an inverse function is. Then we will use the concept that if f is inverse of g, then we can write, g(x)=f1(x)g\left( x \right)={{f}^{-1}}\left( x \right) which will give us f(g(x))=x.f\left( g\left( x \right) \right)=x. We will find out the value of f(g(x))f\left( g\left( x \right) \right) by putting g (x) in place of x in the equation f(x)=x+tanx.f\left( x \right)=x+\tan x. After doing this, we will differentiate f(g(x))=xf\left( g\left( x \right) \right)=x on both the sides. While differentiating this, we will use the chain rule on the left-hand side and then we will find the value of g’(x) in terms of g(x).

Complete step-by-step answer:
Before we solve the question given, we must know what an inverse function is. An inverse function is a function that undoes the action of another function. A function U is the inverse of a function V if whenever y = U(x) then, x = V(y).
Now, in the question, we are given that f is inverse of g. Thus, we can write this as,
g(x)=f1(x)g\left( x \right)={{f}^{-1}}\left( x \right)
f(g(x))=x.....(i)\Rightarrow f\left( g\left( x \right) \right)=x.....\left( i \right)
Now, we will find the value of f(g(x)).f\left( g\left( x \right) \right). For this, we will put g(x) in place of x in the equation f(x)=x+tanx.f\left( x \right)=x+\tan x. Thus, we will get the following equation
f(g(x))=g(x)+tan(g(x))....(ii)\Rightarrow f\left( g\left( x \right) \right)=g\left( x \right)+\tan \left( g\left( x \right) \right)....\left( ii \right)
Now, we will put the value of f(g(x))f\left( g\left( x \right) \right) from (ii) to (i). Thus, we will get,
g(x)+tan(g(x))=x.....(iii)g\left( x \right)+\tan \left( g\left( x \right) \right)=x.....\left( iii \right)
Now, we will differentiate both sides of the equation (iii) with respect to x. Thus, we will get,
ddx[g(x)+tan(g(x))]=ddx(x)\dfrac{d}{dx}\left[ g\left( x \right)+\tan \left( g\left( x \right) \right) \right]=\dfrac{d}{dx}\left( x \right)
ddx(g(x))+ddx[tan(g(x))]=ddx(x)\Rightarrow \dfrac{d}{dx}\left( g\left( x \right) \right)+\dfrac{d}{dx}\left[ \tan \left( g\left( x \right) \right) \right]=\dfrac{d}{dx}\left( x \right)
Now, the differentiation of g(x) and x with respect to x will be g’(x) and 1 respectively. Thus, we will get,
g(x)+ddx[tan(g(x))]=1\Rightarrow {{g}^{'}}\left( x \right)+\dfrac{d}{dx}\left[ \tan \left( g\left( x \right) \right) \right]=1
For the differentiation of tan (g(x)) with respect to x, we will use the chain rule. The chain rule says that differentiation A(B(x)) is given by
ddx[A(B(x))]=A(B(x))×B(x)\dfrac{d}{dx}\left[ A\left( B\left( x \right) \right) \right]={{A}^{'}}\left( B\left( x \right) \right)\times {{B}^{'}}\left( x \right)
Using this, we will get,
g(x)+sec2g(x).g(x)=1.....(iv){{g}^{'}}\left( x \right)+{{\sec }^{2}}g\left( x \right).{{g}^{'}}\left( x \right)=1.....\left( iv \right)
In (iv), we have used ddx(tanx)=sec2x.\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x. On taking g’(x) common, we will get,
g(x)[1+sec2(g(x))]=1{{g}^{'}}\left( x \right)\left[ 1+{{\sec }^{2}}\left( g\left( x \right) \right) \right]=1
g(x)=11+sec2g(x)\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{1}{1+{{\sec }^{2}}g\left( x \right)}
Now, we know the identity that sec2θ=tan2θ+1.{{\sec }^{2}}\theta ={{\tan }^{2}}\theta +1. Thus, we will get,
g(x)=11+tan2g(x)+1\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{1}{1+{{\tan }^{2}}g\left( x \right)+1}
g(x)=12+tan2g(x)......(v)\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{1}{2+{{\tan }^{2}}g\left( x \right)}......\left( v \right)
From (iii), we have,
g(x)+tan(g(x))=x\Rightarrow g\left( x \right)+\tan \left( g\left( x \right) \right)=x
tan(g(x))=xg(x)\Rightarrow \tan \left( g\left( x \right) \right)=x-g\left( x \right)
On squaring both the sides, we will get,
tan2g(x)=(xg(x))2.....(vi)\Rightarrow {{\tan }^{2}}g\left( x \right)={{\left( x-g\left( x \right) \right)}^{2}}.....\left( vi \right)
On putting the value of tan2g(x){{\tan }^{2}}g\left( x \right) from (vi) to (v), we will get,
g(x)=12+(xg(x))2{{g}^{'}}\left( x \right)=\dfrac{1}{2+{{\left( x-g\left( x \right) \right)}^{2}}}
Hence, option (c) is the right answer

Note: We can find the inverse of this function because the given function f(x) is a bijective function. This means f(x) is one – one and onto function. This property is necessary for the function to have an inverse. If f(x) would have been non – bijective, then option (d) would have been correct.