Solveeit Logo

Question

Question: If f(x) = x.cos(x) then find the value of \(f'(\pi )\). Formula: \(\cos (A + B) = \cos A\cos B - \...

If f(x) = x.cos(x) then find the value of f(π)f'(\pi ).
Formula: cos(A+B)=cosAcosBsinAsinB\cos (A + B) = \cos A\cos B - \sin A\sin B

Explanation

Solution

Hint- We will be using the differentiation of f(x)=xcosxf(x) = x\cos x and here we are differentiating two functions of xx with respect to xx. Then replace xx by π\pi to obtain f(π)f'(\pi ) as shown below. Use cosπ=1\cos \pi = - 1 and sinπ=0\sin \pi = 0.

Complete step-by-step answer:
Given that, f(x)=xcosxf(x) = x\cos x
Now differentiating with respect to xx, we get
f(x)=df(x)dx=cosxd(x)dx+xd(cosx)dx\Rightarrow f'(x) = \dfrac{{df(x)}}{{dx}} = \cos x\dfrac{{d(x)}}{{dx}} + x\dfrac{{d(\cos x)}}{{dx}}
f(x)=cosxxsinx\Rightarrow f'(x) = \cos x - x\sin x
f(π)=cosππsinπ1π.0\Rightarrow f'(\pi ) = \cos \pi - \pi \sin \pi \Rightarrow - 1 - \pi .0
f(π)=1\Rightarrow f'(\pi ) = - 1

Note- Here, the f(x)=xcosxf(x) = x\cos x is a product of two functions of xx. We have considered f(x)=f1(x).f2(x)f(x) = {f_1}(x).{f_2}(x) where f1(x)=x{f_1}(x) = x and f2(x)=cosx{f_2}(x) = \cos x. We have used differentiation formula for product of two functions as shown below:
f(x)=df(x)dx=f2(x).df1(x)dx+f1(x).df2(x)dxf'(x) = \dfrac{{df(x)}}{{dx}} = {f_2}(x).\dfrac{{d{f_1}(x)}}{{dx}} + {f_1}(x).\dfrac{{d{f_2}(x)}}{{dx}}.