Solveeit Logo

Question

Mathematics Question on limits and derivatives

If f(x)=(x2)(x4)(x6)....(x2n),f(x)=(x-2)(x-4)(x-6)....(x-2n), then f(2)f'(2) is

A

(1)n2n1(n1)!{{(-1)}^{n}}{{2}^{n-1}}(n-1)!

B

(2)n12n(n1)!{{(-2)}^{n-1}}{{2}^{n}}(n-1)!

C

(2)nn!{{(-2)}^{n}}n!

D

(1)n12n(n1)!{{(-1)}^{n-1}}{{2}^{n}}(n-1)!

Answer

(2)n12n(n1)!{{(-2)}^{n-1}}{{2}^{n}}(n-1)!

Explanation

Solution

\because f(x)=(x2)(x4)(x6)....(x2n)f(x)=(x-2)(x-4)(x-6)....(x-2n) Taking log on both sides, we get logf(x)=log(x2)+log(x4)\log f(x)=\log (x-2)+\log (x-4) +....+log(x2n)+....+\log (x-2n)
aOn differentiating w.r.t. x,x, we get
1f(x)f(x)=1(x2)+1(x4)\frac{1}{f(x)}f(x)=\frac{1}{(x-2)}+\frac{1}{(x-4)} +...+1(x2n)+...+\frac{1}{(x-2n)} f(x)=(x4)(x6)...(x2n)f(x)=(x-4)(x-6)...(x-2n) +(x2)(x6)....(x2n)+(x-2)(x-6)....(x-2n) +.....+(x2)(x6)...(x2(n1))+.....+(x-2)(x-6)...(x-2(n-1))
\therefore f(2)=(2)(4)....(22n)f(2)=(-2)(-4)....(2-2n)
=(2)n1(1.2....(n1))=(2)n1(n1)!={{(-2)}^{n-1}}(1.2....(n-1))={{(-2)}^{n-1}}(n-1)!