Question
Mathematics Question on limits and derivatives
If f(x)=(x−2)(x−4)(x−6)....(x−2n), then f′(2) is
A
(−1)n2n−1(n−1)!
B
(−2)n−12n(n−1)!
C
(−2)nn!
D
(−1)n−12n(n−1)!
Answer
(−2)n−12n(n−1)!
Explanation
Solution
∵ f(x)=(x−2)(x−4)(x−6)....(x−2n) Taking log on both sides, we get logf(x)=log(x−2)+log(x−4) +....+log(x−2n)
aOn differentiating w.r.t. x, we get
f(x)1f(x)=(x−2)1+(x−4)1 +...+(x−2n)1 f(x)=(x−4)(x−6)...(x−2n) +(x−2)(x−6)....(x−2n) +.....+(x−2)(x−6)...(x−2(n−1))
∴ f(2)=(−2)(−4)....(2−2n)
=(−2)n−1(1.2....(n−1))=(−2)n−1(n−1)!