Solveeit Logo

Question

Mathematics Question on integral

If f(x)=x2,g(x)=2x,0x2f(x) = x^2 , g(x) = 2x,0 \leq x \leq 2 then the value of I(x)=02max(f(x),g(x))I(x) = \int\limits_0^2 max (f(x), g(x)) is

A

103\frac{10}{3}

B

13\frac{1}{3}

C

113\frac{11}{3}

D

32

Answer

32

Explanation

Solution

Let r(x)=f(x).g(x)r\left(x\right) = f\left(x\right).g\left(x\right) =x2.2x=2x3 =x^{2} .2x = 2x^{3} r(x)=6x2r'\left(x\right) = 6x^{2} Put 6x2=0,x=06x^{2} = 0 , \, \, \therefore x = 0 Max r(x)=2(2)3=16 r\left(x\right)=2\left(2\right)^{3} = 16 or Max (f(x),g(x))=16\left(f\left(x\right),g\left(x\right)\right) = 16 I(x)=0216dx I\left(x\right)= \int^{2}_{0} 16dx I(x)=[16x]02=320=32 I\left(x\right) = \left[16x\right]^{2}_{0} = 32 -0=32