Solveeit Logo

Question

Question: If \(f(x) = {x^2}{e^{2x}}\)(\(x > 0\)) then find the local maximum value of \(f(x)\) A. \(\dfrac{2...

If f(x)=x2e2xf(x) = {x^2}{e^{2x}}(x>0x > 0) then find the local maximum value of f(x)f(x)
A. 2e2\dfrac{2}{{{e^2}}}
B. 1e2\dfrac{{ - 1}}{{{e^2}}}
C. e2{e^2}
D. 1e2\dfrac{1}{{{e^2}}}

Explanation

Solution

For any function f(x)f(x) to be maximum first equate f(x)=0f'(x) = 0 and if f(x)<0f''(x) < 0 then xx will be the local maxima so first of all let us assume that f(x)=yf(x) = y then find dydx=0\dfrac{{dy}}{{dx}} = 0 and find xx.

Complete step by step solution:
Here we are given the function f(x)f(x) which is equal to f(x)=x2e2xf(x) = {x^2}{e^{2x}} where xx is positive and we need to find the local maximum value for the functionf(x)f(x). Here the local maxima means the point which means maximum with their neighbouring point.
For example: If x0{x_0} is point of the local maxima and x1 and x2{x_1}{\text{ and }}{x_2} are points just before and after the point x0{x_0} respectively then we can say that
f(x0)>f(x1)f({x_0}) > f({x_1}) and also that f(x0)>f(x2)f({x_0}) > f({x_2})
Then it is called the local maxima.
It is determined by making the function slope to zero at some point and if the derivative of the function is negative then that means that it must be the local maximum.
So here we assume that f(x)=yf(x) = y and we are given that f(x)=x2e2xf(x) = {x^2}{e^{2x}} where x>0x > 0
So y=x2e2xy = {x^2}{e^{2x}}
Now as we know that if y=h(x)g(x)y = h(x)g(x) then we can say that dydx=h(x)g(x)+h(x)g(x)\dfrac{{dy}}{{dx}} = h'(x)g(x) + h(x)g'(x)
Here h(x) and g’(x)h'(x){\text{ and g'}}(x) are the derivatives of the terms h(x) and g(x)h(x){\text{ and g(x)}} with respect to xx respectively.
So here
dydx=x2ddxe2x+e2xddxx2\Rightarrow \dfrac{{dy}}{{dx}} = {x^2}\dfrac{d}{{dx}}{e^{2x}} + {e^{2x}}\dfrac{d}{{dx}}{x^2}
dydx=x22e2x+e2x.2x\Rightarrow \dfrac{{dy}}{{dx}} = {x^2}2{e^{2x}} + {e^{2x}}.2x
Now equating it to zero we get that
dydx=x22e2x+2xe2x=0 2e2x(x+1)=0  \Rightarrow \dfrac{{dy}}{{dx}} = {x^2}2{e^{2x}} + 2x{e^{2x}} = 0 \\\ \Rightarrow 2{e^{2x}}(x + 1) = 0 \\\
So we get that either x=0 or x=1x = 0{\text{ or }}x = - 1
Do for x=0 and x=1x = 0{\text{ and }}x = - 1 dydx=0\dfrac{{dy}}{{dx}} = 0
Now we need to check for d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}}
So for d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} we get that
d2ydx2=2x2e2x.2+2e2x.2x+2xe2x.2+2e2x\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 2{x^2}{e^{2x}}.2 + 2{e^{2x}}.2x + 2x{e^{2x}}.2 + 2{e^{2x}}
So we get that
d2ydx2=4x2e2x+8xe2x+2e2x\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 4{x^2}{e^{2x}} + 8x{e^{2x}} + 2{e^{2x}}
d2ydx2=e2x(4x2+8x+2)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {e^{2x}}(4{x^2} + 8x + 2)
Now for x=0x = 0 we get that
d2ydx2=e2x(4x2+8x+2)=e0(0+0+2)=2\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {e^{2x}}(4{x^2} + 8x + 2) = {e^0}(0 + 0 + 2) = 2
Which is positive and therefore at x=0x = 0 it is minimum.
Now for x=1x = - 1 we get that
d2ydx2=e2x(4x2+8x+2)=e2(48+2)=2e2\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = {e^{2x}}(4{x^2} + 8x + 2) = {e^{ - 2}}(4 - 8 + 2) = \dfrac{{ - 2}}{{{e^2}}} and this value is negative
So we get the local maxima at this point.
f(x)=x2e2x\Rightarrow f(x) = {x^2}{e^{2x}}
f(x)=(1)2e2 f(x)=1e2  \Rightarrow f(x) = {( - 1)^2}{e^{ - 2}} \\\ \Rightarrow f(x) = \dfrac{1}{{{e^2}}} \\\

Note:
If we are given that a derivative of the function f(x)f(x) is g(x)g(x) that is d(f(x))dx=g(x)\dfrac{{d(f(x))}}{{dx}} = g(x) then the integral of g(x)g(x) is f(x)f(x) that is g(x)dx=f(x)\int {g(x)dx = f(x)} .