Solveeit Logo

Question

Quantitative Aptitude Question on Linear & Quadratic Equations

If f(x)=x27xf(x)=x^2−7x and g(x)=x+3g(x)=x+3, then the minimum value of f(g(x))3xf(g(x))−3x is

A

-20

B

-15

C

-12

D

-16

Answer

-16

Explanation

Solution

To find the minimum value of f(g(x))3xf(g(x)) - 3x, we first need to find the expression for f(g(x))f(g(x)).

Given:
f(x)=x27xf(x) = x^2 - 7x
g(x)=x+3g(x) = x + 3

Now, f(g(x))f(g(x)) is:
f(g(x))=(x+3)27(x+3)f(g(x)) = (x+3)^2 - 7(x+3)
f(g(x))=x2+6x+97x21f(g(x)) = x^2 + 6x + 9 - 7x - 21
f(g(x))=x2x12f(g(x)) = x^2 - x - 12

Now, we are interested in:
f(g(x))3x=x2x123xf(g(x)) - 3x = x^2 - x - 12 - 3x
f(g(x))3x=x24x12f(g(x)) - 3x = x^2 - 4x - 12

To find the minimum value of the above expression, we can find the derivative and set it to zero.
ddx(x24x12)=2x4\frac{d}{dx} (x^2 - 4x - 12) = 2x - 4

Setting it to zero, 2x4=02x - 4 = 0, gives x=2. x = 2.

Plugging x = 2 into f(g(x))3xf(g(x)) - 3x: f(2+3)3(2)=224(2)12=4812=16f(2+3) - 3(2) = 2^2 - 4(2) - 12 = 4 - 8 - 12 = -16

So, the minimum value of f(g(x))3xf(g(x)) - 3x is -16