Solveeit Logo

Question

Mathematics Question on Matrices

If f(x)=x2+4x5f (x) = x^2 + 4x - 5 and A=[12 43]A = \begin{bmatrix}1&2\\\ 4&-3\end{bmatrix} then f (A) is equal to

A

[0\-4 88]\begin{bmatrix} 0 & \- 4 \\\ 8 & 8 \end{bmatrix}

B

[21 20]\begin{bmatrix} 2 & 1 \\\ 2 & 0 \end{bmatrix}

C

[11 10]\begin{bmatrix} 1 & 1 \\\ 1 & 0 \end{bmatrix}

D

[84 80]\begin{bmatrix} 8 & 4 \\\ 8 & 0 \end{bmatrix}

Answer

[84 80]\begin{bmatrix} 8 & 4 \\\ 8 & 0 \end{bmatrix}

Explanation

Solution

Given : A=[12 43]A = \begin{bmatrix}1&2\\\ 4&-3\end{bmatrix} A2=A.A=[12 43][12 43]\therefore A^{2} = A.A = \begin{bmatrix}1&2\\\ 4&-3\end{bmatrix}\begin{bmatrix}1&2\\\ 4&-3\end{bmatrix} =[1+826 4128+9]=[94 817] = \begin{bmatrix}1+8&2-6\\\ 4-12&8+9\end{bmatrix} = \begin{bmatrix}9&-4\\\ -8&17\end{bmatrix} Now, f(x)=x2+4x5 f \left(x\right) = x^{2} + 4x - 5 f(A)=A2+4A5 \therefore f \left(A\right) = A^{2} + 4A - 5 =A2+4A5I= A^{2} + 4A - 5 I (I is a 2×22 \times 2unit matrix) =[94 817]+4[12 43]5[10 01]= \begin{bmatrix}9&-4\\\ -8&17\end{bmatrix} + 4 \begin{bmatrix}1&2\\\ 4&-3\end{bmatrix}- 5 \begin{bmatrix}1&0\\\ 0&1\end{bmatrix} =[94 817]+[48 1612]+[50 05] = \begin{bmatrix}9&-4\\\ -8&17\end{bmatrix} + \begin{bmatrix}4&8\\\ 16&-12\end{bmatrix}+ \begin{bmatrix}-5&0\\\ 0&-5\end{bmatrix} =[84 80]= \begin{bmatrix}8&4\\\ 8&0\end{bmatrix}