Question
Mathematics Question on Limits
If f(x)={|x|+1, x <0 0, x=0 |x|-1, x>0}
For what value (s) of a does lim x→af(x) exist?
The given function is f(x)= {|x| +1, x<0 0, x=0 |x| +1, x-1, x>0
When a = 0,
limx→0− f(x)= lim x→0- (|x|+1)
limx→0−(-x+1) [if x<0m |x| = -x ]
=-0+1
=1
limx→0+f(x)= lim x→0+ (|x|-1)
=limx→0+ (x-1) [If x > 0, |x| = x]
=0-1
=-1
Here, it is observed that lim x→0-ƒ (x) ≠ limx→0+ ƒ (x).
∴lim f(x) does not exist.
When a <0,
limx→0− f(x)= lim (|x|+1)
=limx→a(-x+1) [x<a<0 ⇒ |x|= -x]
=-a+1
limx→a+f(x)= limx→a+(|x|+1)
=limx→a(-x+1) [a<x<0 ⇒ |x|=-x]
=-a+1
∴limx→a− f(x)= limx→a+ f(x)=−a+1
Thus, the limit of f (x) exists at x = a, where a < 0.
When a > 0
limx→a− f(x)= limx→a−(|x|-1)
= limx→a (x-1) [0<x<a ⇒ |x|=x]
=a-1
limx→a+ f(x)= limx→a+(|x|-1)
= limx→a (x-1) [0<a<x ⇒ |x|=x]
=a-1
∴limx→a− f(x)= limx→a+ f(x)=a-1
Thus, limit of f (x)exists at x = a, where a > 0.
Thus, lim x→a f(x) exists for all a ≠ 0.