Solveeit Logo

Question

Mathematics Question on Limits

If f(x)={|x|+1, x <0 0, x=0 |x|-1, x>0}
For what value (s) of a does lim x\rightarrowaf(x) exist?

Answer

The given function is f(x)= {|x| +1, x<0 0, x=0 |x| +1, x-1, x>0
When a = 0,
limx0\lim_{x\rightarrow 0^-} f(x)= lim x\rightarrow0- (|x|+1)
limx0\lim_{x\rightarrow 0^-}(-x+1) [if x<0m |x| = -x ]
=-0+1
=1
limx0+\lim_{x\rightarrow 0^+}f(x)= lim x\rightarrow0+ (|x|-1)
=limx0+\lim_{x\rightarrow 0^+} (x-1) [If x > 0, |x| = x]
=0-1
=-1
Here, it is observed that lim x\rightarrow0-ƒ (x) ≠ limx0+\lim_{x\rightarrow 0^+} ƒ (x).
∴lim f(x) does not exist.
When a <0,
limx0\lim_{x\rightarrow 0^-} f(x)= lim (|x|+1)
=limxa\lim_{x\rightarrow a}(-x+1) [x<a<0 \Rightarrow |x|= -x]
=-a+1
limxa+\lim_{x\rightarrow a^+}f(x)= limxa+\lim_{x\rightarrow a^+}(|x|+1)
=limxa\lim_{x\rightarrow a}(-x+1) [a<x<0 \Rightarrow |x|=-x]
=-a+1
limxa\lim_{x\rightarrow a^-} f(x)= limxa+\lim_{x\rightarrow a^+} f(x)=−a+1
Thus, the limit of f (x) exists at x = a, where a < 0.
When a > 0
limxa\lim_{x\rightarrow a^-} f(x)= limxa\lim_{x\rightarrow a^-}(|x|-1)
= limxa\lim_{x\rightarrow a} (x-1) [0<x<a \Rightarrow |x|=x]
=a-1
limxa+\lim_{x\rightarrow a^+} f(x)= limxa+\lim_{x\rightarrow a^+}(|x|-1)
= limxa\lim_{x\rightarrow a} (x-1) [0<a<x \Rightarrow |x|=x]
=a-1
limxa\lim_{x\rightarrow a^-} f(x)= limxa+\lim_{x\rightarrow a^+} f(x)=a-1
Thus, limit of f (x)exists at x = a, where a > 0.
Thus, lim x\rightarrowa f(x) exists for all a ≠ 0.