Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If f(x)=limyxsin2ysin2xy2x2,f\,(x)=\underset{y\to x}{\mathop{lim}}\,\,\frac{{{\sin }^{2}}y-{{\sin }^{2}}x}{{{y}^{2}}-{{x}^{2}}}, then 4xf(x)dx\int{4x\,\,f(x)\,\,dx} =

A

cos2x+c\cos \,\,2x+c

B

2cos2x+c2\,\cos \,\,2x+c

C

cos2x+c-\,\cos \,\,2x+c

D

2cos2x+c-2\,\cos \,\,2x+c

Answer

cos2x+c-\,\cos \,\,2x+c

Explanation

Solution

f(x)=limyxsin2ysin2xy2x2f(x)=\underset{y\to x}{\mathop{\lim }}\,\,\,\,\frac{{{\sin }^{2}}\,y-\,{{\sin }^{2}}x}{{{y}^{2}}-{{x}^{2}}}
[00form]\left[ \frac{0}{0}\,form \right]
=limyx2sinycosy02y0=\underset{y\to x}{\mathop{\lim }}\,\,\frac{2\sin \,y\,\cos \,y-0}{2y-0}
=sin2x2x=\frac{\sin \,2x}{2x}
\therefore 4xf(x)dx=4x(sin2x2x)dx\int{4x\,\,f(x)\,\,dx=\int{4x\,\,\left( \frac{\sin 2x}{2x} \right)}\,\,dx}
=2sin2xdx=2\int{\sin \,\,2x\,\,dx}
=cos2x+c=-\cos \,2x+c