Question
Mathematics Question on Integrals of Some Particular Functions
If f(x)=y→xlimy2−x2sin2y−sin2x, then ∫4xf(x)dx =
A
cos2x+c
B
2cos2x+c
C
−cos2x+c
D
−2cos2x+c
Answer
−cos2x+c
Explanation
Solution
f(x)=y→xlimy2−x2sin2y−sin2x
[00form]
=y→xlim2y−02sinycosy−0
=2xsin2x
∴ ∫4xf(x)dx=∫4x(2xsin2x)dx
=2∫sin2xdx
=−cos2x+c