Solveeit Logo

Question

Question: If f (x) = \(\sqrt{1 - \sin 2x}\), then f ' (x) is equals to –...

If f (x) = 1sin2x\sqrt{1 - \sin 2x}, then f ' (x) is equals to –

A

–(cos x + sin x), for x Ī (π4\frac{\pi}{4},π2\frac{\pi}{2})

B

(cos x + sin x), for x Ī (0, π4\frac{\pi}{4})

C

– (cos x + sin x), for x Ī (0, π4\frac{\pi}{4})

D

(cos x – sin x), for x (π4\frac{\pi}{4},π2\frac{\pi}{2})

Answer

– (cos x + sin x), for x Ī (0, π4\frac{\pi}{4})

Explanation

Solution

f (x) = 1sin2x\sqrt{1 - \sin 2x}

Ž f(x) = | sin x – cos x|

Now see, in the intervals, which one of sin x and cos x is greater .