Solveeit Logo

Question

Mathematics Question on Relations and functions

If f(x)=log10x2f(x) = \sqrt{\log_{10} x^2} . The set of all values of xx for which f(x)f(x) is real , is

A

[1,1][-1,1]

B

[1,][ 1, \infty ]

C

(,1](- \infty , - 1 ]

D

(,1][1,)(- \infty , - 1 ] \cup [1, \infty)

Answer

(,1][1,)(- \infty , - 1 ] \cup [1, \infty)

Explanation

Solution

f(x)=log10x2f(x)=\sqrt{\log _{10} x^{2}} is real If log10x20\log _{10} x^{2} \geq 0 x21\Rightarrow x^{2} \geq 1 x1\Rightarrow x1 x(,1][1,)\Rightarrow x \in(-\infty,-1] \cup[1, \infty)