Solveeit Logo

Question

Question: If \(f(x)=\sqrt{\left| x-1 \right|}\) and\(g(x)=\sin x\) then calculate\((fog)x\) and \((gof)x\) dis...

If f(x)=x1f(x)=\sqrt{\left| x-1 \right|} andg(x)=sinxg(x)=\sin x then calculate(fog)x(fog)x and (gof)x(gof)x discuss differentiability of (gof)x(gof)x at x=1.

Explanation

Solution

Hint: The given problem is related to composite functions and their differentiability. Use the formula given below and check the differentiability by removing the modulus sign.
(gof)x=g[f(x)](gof)x=g[f(x)]

Complete step-by-step solution -
We will write the given first,
f(x)=x1f(x)=\sqrt{\left| x-1 \right|}Andg(x)=sinxg(x)=\sin x …………………………………….. (1)
Now, we will find (fog)x(fog)x and (gof)x(gof)x separately,
(1). (fog)x=f[g(x)](fog)x=f[g(x)]
As, f(x)=x1f(x)=\sqrt{\left| x-1 \right|}
To find f[g(x)]f[g(x)] put x=g(x)x=g(x)i.e. put, x=sinxx=\sin x
(fog)x=sinx1\therefore (fog)x=\sqrt{\left| \sin x-1 \right|}
(2). (gof)x=g[f(x)](gof)x=g[f(x)]
As, g(x)=sinxg(x)=\sin x
To findg[f(x)]g[f(x)] putx=f(x)x=f(x) i.e. put, x=x1x=\sqrt{\left| x-1 \right|}
(gof)x=sin(x1)\therefore (gof)x=\sin \left( \sqrt{\left| x-1 \right|} \right)……………………………………… (2)
Now to check the differentiability of function given in equation (2) we should define it by removing its modulus first,

Modulus functions can be defined as shown below,
If f(x)=xf(x)=\left| x \right| then,
f(x)=xf(x)=-x For x<0x<0
f(x)=xf(x)=x For x0x\ge 0
Similarly we can define (gof)x(gof)x with the help of above definition,
(gof)x=sin((x1))(gof)x=\sin \left( \sqrt{-(x-1}) \right) For, x1<0x-1<0
(gof)x=sin(x1)(gof)x=\sin \left( \sqrt{x-1} \right) For, x10x-1\ge 0
If we have to simplify the limits then we should add it by 1 on both sides,
(gof)x=sin((x1))(gof)x=\sin \left( \sqrt{-(x-1}) \right) For, x1+1<0+1x-1+1<0+1
(gof)x=sin(x1)(gof)x=\sin \left( \sqrt{x-1} \right) For, x1+10+1x-1+1\ge 0+1
Now by further algebraic simplifications we can write above equations as,
(gof)x=sin(x+1)(gof){{x}^{-}}=\sin \left( \sqrt{-x+1} \right) For, x<1x<1
(gof)x+=sin(x1)(gof){{x}^{+}}=\sin \left( \sqrt{x-1} \right) For, x1x\ge 1
Now as asked in problem we have to check the differentiability of (gof)x(gof)x at 1,
Consider, Left hand derivative (L.H.D.) of the function
L.H.D.=(gof)xL.H.D.=(gof)'{{x}^{-}}
L.H.D.=ddxsin(x+1)\therefore L.H.D.=\dfrac{d}{dx}\sin \left( \sqrt{-x+1} \right)
As we know the Formula: ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x
L.H.D.=cos(x+1)ddx(x+1)\therefore L.H.D.=\cos \left( \sqrt{-x+1} \right)\dfrac{d}{dx}\left( \sqrt{-x+1} \right)
As we know the Formula: ddx(x)=12x\dfrac{d}{dx}\left( \sqrt{x} \right)=\dfrac{1}{2\sqrt{x}}
L.H.D.=cos(x+1)12x+1\therefore L.H.D.=\cos \left( \sqrt{-x+1} \right)\dfrac{-1}{2\sqrt{-x+1}}

Simply put x=1 in above equation,
[L.H.D.]x=1=cos(1+1)121+1\therefore {{\left[ L.H.D. \right]}_{x=1}}=\cos \left( \sqrt{-1+1} \right)\dfrac{1}{2\sqrt{-1+1}}
[L.H.D.]x=1=cos(0)120\therefore {{\left[ L.H.D. \right]}_{x=1}}=\cos \left( 0 \right)\dfrac{1}{2\sqrt{0}}
[L.H.D.]x=1=\therefore {{\left[ L.H.D. \right]}_{x=1}}=\infty ………………………………………. (3)
Consider, Right hand derivative (R.H.D.) of the function
R.H.D.=(gof)x+R.H.D.=(gof)'{{x}^{+}}
R.H.D.=ddxsin(x1)\therefore R.H.D.=\dfrac{d}{dx}\sin \left( \sqrt{x-1} \right)
As we know the Formula: ddxsinx=cosx\dfrac{d}{dx}\sin x=\cos x,
R.H.D.=cos(x1)ddx(x1)\therefore R.H.D.=\cos \left( \sqrt{x-1} \right)\dfrac{d}{dx}\left( \sqrt{x-1} \right)
As we know the Formula: ddx(x)=1x\dfrac{d}{dx}\left( \sqrt{x} \right)=\dfrac{1}{\sqrt{x}}
R.H.D.=cos(x1)12x1\therefore R.H.D.=\cos \left( \sqrt{x-1} \right)\dfrac{1}{2\sqrt{x-1}}
Simply put x=1 in above equation,
[R.H.D]x=1=cos(11)1211\therefore {{\left[ R.H.D \right]}_{x=1}}=\cos \left( \sqrt{1-1} \right)\dfrac{1}{2\sqrt{1-1}}
[R.H.D]x=1=cos(0)120\therefore {{\left[ R.H.D \right]}_{x=1}}=\cos \left( \sqrt{0} \right)\dfrac{1}{2\sqrt{0}}
[R.H.D]x=1=\therefore {{\left[ R.H.D \right]}_{x=1}}=\infty …………………………………… (4)
From (3) and (4) we can write,
L.H.D.=R.H.D.L.H.D.=R.H.D.
Therefore, the function (gof)x(gof)x is differentiable at 1.

Note: Don’t get confused if you are getting \infty as a derivative at a particular point as it only means that the tangent is parallel to the y-axis. Students generally think that when they are getting derivative as \infty , it might be wrong. But it is not the case. Derivative of a function can be 0, any real number or \infty .