Solveeit Logo

Question

Mathematics Question on Differentiability

If f(x)=2x+42xf(x) = \sqrt{2x} + \frac{4}{\sqrt{2x}} , then f(2)f'(2) is equal to

A

0

B

-1

C

1

D

2

Answer

0

Explanation

Solution

The correct answer is A:0
We have,
f(x)=2x+42x=2x+4(2x)12f(x)=\sqrt{2 x}+\frac{4}{\sqrt{2 x}}=\sqrt{2 x}+4(2 x)^{-\frac{1}{2}}
f(x)=122x2+4[12(2x)3/2(2)]\Rightarrow f^{'}(x)=\frac{1}{2 \sqrt{2 x}}-2+4\left[-\frac{1}{2}(2 x)^{-3 / 2}(2)\right]
=12x4(2x)3/2=\frac{1}{\sqrt{2} \sqrt{x}}-\frac{4}{(2 x)^{3 / 2}}
=12x422x3/2=\frac{1}{\sqrt{2} \sqrt{x}}-\frac{4}{2 \sqrt{2} x^{3 / 2}}
=12x2xx=\frac{1}{\sqrt{2} \sqrt{x}}-\frac{\sqrt{2}}{x \sqrt{x}}
Now f(2)=12×222×2f(2)=\frac{1}{\sqrt{2}\times{\sqrt{2}}}-\frac{\sqrt{2}}{2\times\sqrt{2}}
=0