Solveeit Logo

Question

Question: If \(f(x) = \sqrt {25 - {x^2}} \) , then what is \(\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f...

If f(x)=25x2f(x) = \sqrt {25 - {x^2}} , then what is limx1f(x)f(1)x1\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} equal to?
A. 15\dfrac{1}{5}
B. 124\dfrac{1}{{24}}
C. 24\sqrt {24}
D. 124 - \dfrac{1}{{\sqrt {24} }}

Explanation

Solution

To solve this question we need to understand the concept of limit and differentiability. Here we use the differentiability at a point.
The function f(x)f(x) is said to be differentiable at the point x  =  a  x\; = \;a\; if the derivative f(a)  f'(a)\; exists at every point in its domain. It is given by
f(a)  =limxaf(x)f(a)xa(1)f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)
If f(x)=25x2f(x) = \sqrt {25 - {x^2}} and   a=1  \;a = 1\;then, from equation (1)(1) we get,
limx1f(x)f(1)x1=f(1)\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} = f'(1)
We have to find the derivative of f(x)=25x2f(x) = \sqrt {25 - {x^2}} at point   a=1  \;a = 1\;.
Use the formulas of derivative;
ddx(xn)=nxn1\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}
ddx(x)=12x\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}
The value of f(1)f'(1) is the required solution.

Complete step-by-step answer:
Given the function, f(x)=25x2f(x) = \sqrt {25 - {x^2}} and use the differentiability at a point.
The function f(x)f(x) is said to be differentiable at the point x  =  a  x\; = \;a\; if the derivative f(a)  f'(a)\; exists at every point in its domain. It is given by
f(a)  =limxaf(x)f(a)xa(1)f'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} \ldots (1)
Substitute   a=1  \;a = 1\;into the equation (1)(1).
f(1)  =limxaf(x)f(1)x1f'(1)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(1)}}{{x - 1}}
\therefore Evaluate first order derivative of f(x)=25x2f(x) = \sqrt {25 - {x^2}} at point11.
d(25x2)dx=1225x2ddx(25x2)\dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}\dfrac{d}{{dx}}(25 - {x^2})
d(25x2)dx=1225x2(2x)\Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = \dfrac{1}{{2\sqrt {25 - {x^2}} }}( - 2x)
d(25x2)dx=x25x2\Rightarrow \dfrac{{d(\sqrt {25 - {x^2}} )}}{{dx}} = - \dfrac{x}{{\sqrt {25 - {x^2}} }}
f(x)=x25x2\Rightarrow f'(x) = - \dfrac{x}{{\sqrt {25 - {x^2}} }}
The value of f(1)f'(1) is the required solution so, substitute x=1x = 1 into f(x)f'(x).
f(1)=12512\Rightarrow f'(1) = - \dfrac{1}{{\sqrt {25 - {1^2}} }}
f(1)=124\Rightarrow f'(1) = - \dfrac{1}{{\sqrt {24} }}

Correct Answer: D. 124 - \dfrac{1}{{\sqrt {24} }}

Note:
Most important step is to compare limx1f(x)f(1)x1\mathop {\lim }\limits_{x \to 1} \dfrac{{f(x) - f(1)}}{{x - 1}} with the formula of differentiability f(a)  =limxaf(x)f(a)xaf'(a)\; = \mathop {\lim }\limits_{x \to a} \dfrac{{f(x) - f(a)}}{{x - a}} and find f(1)f'(1).
Here are the formulas of derivative given below,
ddx(xn)=nxn1\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}
ddx(x)=12x\dfrac{d}{{dx}}(\sqrt x ) = \dfrac{1}{{2\sqrt x }}
ddxex=ex\dfrac{d}{{dx}}{e^x} = {e^x}
ddx(1x)=logx\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = \log x