Solveeit Logo

Question

Mathematics Question on Differentiability

If f(x)=sin(sinx)f(x) = sin\, (sin\, x) and f(x)+tanxf(x)+g(x)=0,f'' (x) + tan \,x\,f'(x)+ g(x) = 0, then g(x)g(x) is :

A

cos2xcos(sinx)cos^2\, x\, cos\, (sin\, x)

B

sin2xcos(cosx)sin^2\, x\, cos\, (cos\, x)

C

sin2xsin(cosx)sin^2\, x\, sin\, (cos\, x)

D

cos2xsin(sinx)cos^2\, x\, sin\, (sin\, x)

Answer

cos2xsin(sinx)cos^2\, x\, sin\, (sin\, x)

Explanation

Solution

f(x)=sin(sinx)f \left(x\right) = sin\, \left(sin\,x\right)
f(x)=cos(sinx).cosx\Rightarrow f '\left(x\right)=cos\left(sin\,x\right).cos\,x
f(x)=sin(sinx).cos2cos(sinx).(sinx)\Rightarrow f ''\left(x\right)=-sin\,\left(sin\,x\right).cos^{2}\,cos\left(sin\,x\right).\left(-sin\,x\right)
=cos2x.sin(sinx)sinx.cos(sinx)=-cos^{2}\,x. sin\left(sin\,x\right)-sin\,x.cos\left(sin\,x\right)
Now f(x)+tanx.f(x)+g(x)=0f ''\left(x\right) + tan x .f '\left(x\right) + g \left(x\right) = 0
g(x)=cos2x.sin(sinx)+sinx.cos(sinx)tanx.cosx.cos(sinx)\Rightarrow g\left(x\right) = cos^{2}\, x . sin \left(sin\, x\right) + sin\, x . cos \left(sin\, x\right)- tan \,x . cos\, x . cos \left(sin\, x\right)
g(x)=cos2x.sin(sinx).\Rightarrow g\left(x\right) = cos^{2}\,x . sin \left(sin\, x\right).