Solveeit Logo

Question

Question: If f ў(x) = sin (log x) and y = ѓ\(\left( \frac{2x + 3}{3 - 2x} \right)\), then \(\frac{dy}{dx}\) is...

If f ў(x) = sin (log x) and y = ѓ(2x+332x)\left( \frac{2x + 3}{3 - 2x} \right), then dydx\frac{dy}{dx} is –

A

9cos(logx)x(32x)2\frac{9\cos(\log x)}{x(3 - 2x)^{2}}

B

9cos(log2x+332x)x(32x)2\frac{9\cos\left( \log\frac{2x + 3}{3 - 2x} \right)}{x(3 - 2x)^{2}}

C

9sin(log(2x+332x))(32x)2\frac{9\sin\left( \log\left( \frac{2x + 3}{3 - 2x} \right) \right)}{(3 - 2x)^{2}}

D

None of these

Answer

None of these

Explanation

Solution

dydx\frac{dy}{dx} = ƒ¢(z) dzdx\frac{dz}{dx} …(1)

Where z = 2x+332x\frac{2x + 3}{3 - 2x},

dzdx\frac{dz}{dx} = (32x).2(2x+3).(2)(32x)2\frac{(3 - 2x).2 - (2x + 3).(–2)}{(3–2x)^{2}}

= 12(32x)2\frac{12}{(3 - 2x)^{2}}

\ From (1), dydx\frac{dy}{dx} = sin (log z) dzdx\frac{dz}{dx}

= sin (log(2x+332x))\left( \log\left( \frac{2x + 3}{3 - 2x} \right) \right). 12(32x)2\frac{12}{(3 - 2x)^{2}}.