Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If f(x) = sin (log x) and y=f(2x+332x)y = f\left(\frac{2x+3}{3-2x}\right), then dydx\frac{dy}{dx} equals

A

sin[log(2x+332x)]sin\left[log\left(\frac{2x+3}{3-2x}\right)\right]

B

12(32x)2\frac{12}{\left(3-2x\right)^2}

C

12(32x)2sin[log(2x+332x)]\frac{12}{\left(3-2x\right)^{2}}sin\left[log\left(\frac{2x+3}{3-2x}\right)\right]

D

12(32x)2cos[log(2x+332x)]\frac{12}{\left(3-2x\right)^{2}}cos\left[log\left(\frac{2x+3}{3-2x}\right)\right]

Answer

12(32x)2sin[log(2x+332x)]\frac{12}{\left(3-2x\right)^{2}}sin\left[log\left(\frac{2x+3}{3-2x}\right)\right]

Explanation

Solution

Let f(x)=sin[logx]f'\left(x\right) = sin \left[log x\right] and y=f(2x+332x)y = f\left(\frac{2x+3}{3-2x}\right) Now, dydx=f(2x+332x).ddx(2x+332x)\frac{dy}{dx} = f' \left(\frac{2x+3}{3-2x}\right) . \frac{d}{dx}\left(\frac{2x+3}{3-2x}\right) =sin[log(2x+332x)][(64x)4x(6)](32x2)= sin\left[log\left(\frac{2x+3}{3-2x}\right)\right] \frac{\left[\left(6-4x-\right)-4x\left(-6\right)\right]}{\left(3-2x^{2}\right)} =12(32x2)sin[log(2x+332x)]= \frac{12}{\left(3-2x^{2}\right)}sin\left[log\left(\frac{2x+3}{3-2x}\right)\right]