Solveeit Logo

Question

Question: If \(f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\p...

If f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3)f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right) andg(54)=1g\left( \dfrac{5}{4} \right)=1, then (gof)(x)\left( gof \right)\left( x \right) is equal to
A. 0
B. 2
C. 1
D. 3

Explanation

Solution

Hint: In the question use the identities sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin Band cos(A+B)=cosAcosBsinAsinB\cos (A+B)=\cos A\cos B-\sin A\sin Band get the desired result.

Complete step-by-step answer:
In the question we are given that,
f(x)=sin2x+sin2(x+π3)+cosxcos(x+π3)f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)

We will now consider the identities,
sin(A+B)=sinAcosB+cosAsinB\sin (A+B)=\sin A\cos B+\cos A\sin B
And
cos(A+B)=cosAcosBsinAsinB\cos (A+B)=\cos A\cos B-\sin A\sin B

Using the above mentioned identities to expand f(x), we get,
f(x)={{\sin }^{2}}x+{{\left\\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\\}}^{2}}+\cos x\left\\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\\}
f(x)={{\sin }^{2}}x+{{\left\\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\\}}^{2}}+\cos x\left\\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\\}
We know cosπ3=12\cos \dfrac{\pi }{3}=\dfrac{1}{2} and sinπ3=32\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2},

substituting these values in above equation, we get
f(x)={{\sin }^{2}}x+{{\left\\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\\}}^{2}}+\cos x\left\\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\\}
Now we will expand f(x) and use the formula
(a+b)2=a2+2ab+b2{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}
So,

& f(x)={{\sin }^{2}}x+{{\left( \dfrac{\sin x}{2} \right)}^{2}}+2\left( \dfrac{\sin x}{2} \right)\left( \dfrac{\sqrt{3}\cos x}{2} \right)+{{\left( \dfrac{\sqrt{3}\cos x}{2} \right)}^{2}}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\\ & f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{\sqrt{3}\sin x\cos x}{2}+\dfrac{{{\cos }^{2}}x}{2}-\dfrac{\sqrt{3}\cos x\sin x}{2} \\\ \end{aligned}$$ By cancelling the like terms, we get $$f(x)={{\sin }^{2}}x+\dfrac{{{\sin }^{2}}x}{4}+\dfrac{3{{\cos }^{2}}x}{4}+\dfrac{{{\cos }^{2}}x}{2}$$ Taking out the common terms, we get $$f(x)={{\sin }^{2}}x\left( 1+\dfrac{1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3}{4}+\dfrac{1}{2} \right)$$ Taking the LCM and solving, we get $$\begin{aligned} & f(x)={{\sin }^{2}}x\left( \dfrac{4+1}{4} \right)+{{\cos }^{2}}x\left( \dfrac{3+2}{4} \right) \\\ & \Rightarrow f(x)={{\sin }^{2}}x\left( \dfrac{5}{4} \right)+{{\cos }^{2}}x\left( \dfrac{5}{4} \right) \\\ \end{aligned}$$ Now we take out the common term, and write it as, $$f(x)=\dfrac{5}{4}\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)$$ Now we will use the identity $${{\sin }^{2}}x+{{\cos }^{2}}x=1$$ We get, $$f(x)=\dfrac{5}{4}\times 1=\dfrac{5}{4}$$ Now in the equation where we were asked to find out the value of $\left( gof \right)\left( x \right)$, i.e., $g(f(x))$ Here in the above operations we got$$f(x)=\dfrac{5}{4}$$. So, we get $g(f(x))=g\left( \dfrac{5}{4} \right)$ In the question it is already given that $g\left( \dfrac{5}{4} \right)=1$ So now, $g(f(x))$=$g\left( \dfrac{5}{4} \right)=1$ Therefore, $\left( gof \right)\left( x \right)$ is equal to 1. Hence the correct answer is option ‘C’. Note: Generally in these types of questions, students are always in a dilemma which identity they should use. Another approach is substituting $${{\sin }^{2}}x=1-{{\cos }^{2}}x$$ in the given equation, we get $f(x)={{\sin }^{2}}x+1-{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\pi }{3} \right)$ Now taking out the common term, we get $$f(x)={{\sin }^{2}}x+1+\cos \left( x+\dfrac{\pi }{3} \right)\left( \cos x-\cos \left( x+\dfrac{\pi }{3} \right) \right)$$ But this becomes a tedious one.