Question
Question: If \(f(x)={{\sin }^{2}}x+{{\sin }^{2}}\left( x+\dfrac{\pi }{3} \right)+\cos x\cos \left( x+\dfrac{\p...
If f(x)=sin2x+sin2(x+3π)+cosxcos(x+3π) andg(45)=1, then (gof)(x) is equal to
A. 0
B. 2
C. 1
D. 3
Solution
Hint: In the question use the identities sin(A+B)=sinAcosB+cosAsinBand cos(A+B)=cosAcosB−sinAsinBand get the desired result.
Complete step-by-step answer:
In the question we are given that,
f(x)=sin2x+sin2(x+3π)+cosxcos(x+3π)
We will now consider the identities,
sin(A+B)=sinAcosB+cosAsinB
And
cos(A+B)=cosAcosB−sinAsinB
Using the above mentioned identities to expand f(x), we get,
f(x)={{\sin }^{2}}x+{{\left\\{ \sin \left( x+\dfrac{\pi }{3} \right) \right\\}}^{2}}+\cos x\left\\{ \cos \left( x+\dfrac{\pi }{3} \right) \right\\}
f(x)={{\sin }^{2}}x+{{\left\\{ \sin x\cos \dfrac{\pi }{3}+\cos x\sin \dfrac{\pi }{3} \right\\}}^{2}}+\cos x\left\\{ \cos x\cos \dfrac{\pi }{3}-\sin x\sin \dfrac{\pi }{3} \right\\}
We know cos3π=21 and sin3π=23,
substituting these values in above equation, we get
f(x)={{\sin }^{2}}x+{{\left\\{ \dfrac{\sin x}{2}+\dfrac{\sqrt{3}\cos x}{2} \right\\}}^{2}}+\cos x\left\\{ \dfrac{\cos x}{2}-\dfrac{\sqrt{3}\sin x}{2} \right\\}
Now we will expand f(x) and use the formula
(a+b)2=a2+2ab+b2
So,