Solveeit Logo

Question

Question: If \[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\] , then (a) \[f\] is derivabl...

If f(x)=sin1(2x1+x2)f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right) , then
(a) ff is derivable for all xx, with x<1\left| x \right|<1
(b) ff is not derivable at x=1x=1
(c) ff is not derivable at x=1x=-1
(d) ff is derivable for all xx, with x>1\left| x \right|>1

Explanation

Solution

Hint: Check the differentiability of f(x) at the end points of its domain and check which option is matching with your answer. Also use the half angle formula in terms of “tan” for substitution.

In a given problem we have to find whether the function is differentiable and if yes then at what values?
For that we will just rewrite given equation,
f(x)=sin1(2x1+x2)f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)
Now, to simplify the problem substitute
x=tanθx=\tan \theta In the above problem. Therefore, θ=tan1x\theta ={{\tan }^{-1}}x…………………………………. (1)
f(x)=sin1(2tanθ1+tanθ2)\therefore f(x)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}} \right)
To proceed further we should know the Half Angle formula for sin2θ\sin 2\theta which is given below,
Formula:
sin2θ=2tanθ1+tanθ2\sin 2\theta =\dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}}
Therefore f(x)f(x) will become,
f(x)=sin1(sin2θ)\therefore f(x)={{\sin }^{-1}}\left( \sin 2\theta \right) ……………………….. (2)
If we have to simplify further then we should know it’s simplification in various domains, which are given below,
Formulae:
sin1(sinx)=πx{{\sin }^{-1}}\left( \sin x \right)=-\pi -x For x<π2x<\dfrac{-\pi }{2}
For π2xπ2\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}
sin1(sinx)=πx{{\sin }^{-1}}\left( \sin x \right)=\pi -x For x>π2x>\dfrac{\pi }{2}
We can write equation (2) according to above formulae by replacing ‘x’ with 2θ2\theta
As, f(x)=sin1(sin2θ)f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)
f(x)=π2θf(x)=-\pi -2\theta For 2θ<π22\theta <\dfrac{-\pi }{2}……………………………. (2)
f(x)=2θf(x)=2\theta For π22θπ2\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}…………………….. (3)
f(x)=π2θf(x)=\pi -2\theta For 2θ>π22\theta >\dfrac{\pi }{2}……………………………… (4)
Before substituting the value of θ\theta we will first convert limits,
As, π22θπ2\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}
Dividing by 2 we will get,
π4θπ4\dfrac{-\pi }{4}\le \theta \le \dfrac{\pi }{4}
Take tangent of all angles,
tanπ4tanθtanπ4\tan \dfrac{-\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}
tanπ4tanθtanπ4\therefore -\tan \dfrac{\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}
1tanθ1\therefore -1\le \tan \theta \le 1
From (1) we can write above equation as,
1x1\therefore -1\le x\le 1………………………………… (5)
Now, we can easily write equations (2), (3), (4) by substituting x=tanθx=\tan \theta from (1) and replacing limits with the help of (5),
f(x)=π2tanxf(x)=-\pi -2\tan x For x<1x<-1
f(x)=2tanxf(x)=2\tan x For 1x1-1\le x\le 1
f(x)=π2tanxf(x)=\pi -2\tan x For x>1x>1
Now we will check the differentiability at -1, for that we are going to use the formula given below for several times.
Formula:
ddxtanx=11+x2\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}
L.H.D.={{\left[ \dfrac{d}{dx}(-\pi -2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{-2}{2}=-1$$$$\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}
R.H.D.=[ddx(2tanx)]x=1=[21+x2]x=1=22=1R.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{2}{2}=1
L.H.D.R.H.D.\therefore L.H.D.\ne R.H.D.
Therefore f(x) is not differentiable at -1…………………………………………. (6)
L.H.D.=[ddx(2tanx)]x=1=[21+x2]x=1=22=1L.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{2}{2}=1
L.H.D.=[ddx(π2tanx)]x=1=[21+x2]x=1=22=1L.H.D.={{\left[ \dfrac{d}{dx}(\pi -2\tan x) \right]}_{x=1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{-2}{2}=-1
L.H.D.R.H.D.\therefore L.H.D.\ne R.H.D.
Therefore f(x) is not differentiable at 1………………………………………….. (7)

As, f(x) is not differentiable at x=1x=1 and x=1x=-1 we can say that f(x) is only differentiable only in its domain with open intervals i.e. In (1,1)(-1,1).
\because [From (6) and (7)]
The domain can also be expressed as x<1\left| x \right|<1
This can be shown as follows,
x<1\left| x \right|<1\equiv x<1x<1 And x<1-x<1
\equiv $$$$x\in [0,1) And x>1x>-1
\equiv $$$$x\in [0,1) And x(1,0]x\in (-1,0]
x<1\left| x \right|<1 \equiv x(1,1)x\in (-1,1)
Option (a) (b) and (c) are the correct answers.

Note:
Convert the limits very much carefully as there are chances of silly mistakes.
We should know how the functions can be defined in different domains as given below,
f(x)=π2tan1xf(x)=-\pi -2{{\tan }^{-1}}x For x<1x<-1
f(x)=2tan1xf(x)=2{{\tan }^{-1}}x For 1x1-1\le x\le 1
f(x)=π2tan1xf(x)=\pi -2{{\tan }^{-1}}x For x>1x>1