Question
Mathematics Question on Continuity and differentiability
If f(x)=logx2(logx), then f′(x) at x=e is
A
0
B
1
C
e1
D
2e1
Answer
2e1
Explanation
Solution
f(x)=logx2(logx)
⇒f(x)=21[logx(logx)][∵loganb=n1logab]
⇒f(x)=21[logxlog(logx)](∵logab=logalogb)
⇒f′(x)=21[(logx)2log(x)dxd[log(log(x))]−log(logx)dxdlogx]
=21[(logx)2log(x)logx1×x1−log(logx)x1]
=21[(logx)2x1−xlog(log(x))]
⇒f′(x)=21[x×(logx)21−log(log(x))]
⇒f′(e)=21[e(loge)21−log(log(e))]
=21[e1−0]=2e1