Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If f(x)=loge(1+x)loge(1x),f(x)={{\log }_{e}}\,(1+x)-{{\log }_{e}}(1-x), then the value of 1/21/2f(x)dx\int_{-1/2}^{1/2}{f(x)\,\,\,dx} equals to

A

00

B

11

C

12\frac{1}{2}

D

12-\frac{1}{2}

Answer

00

Explanation

Solution

Given, f(x)=loge(1+x)loge(1x)f(x)={{\log }_{e}}(1+x)-{{\log }_{e}}(1-x)
\therefore f(x)=loge(1x)loge(1+x)f(-x)={{\log }_{e}}(1-x)-{{\log }_{e}}(1+x)
=[loge(1+x)loge(1x)]=-[{{\log }_{e}}(1+x)-{{\log }_{e}}(1-x)]
=f(x)=-f(x)
\therefore f(x)f(x) is an odd function.
\therefore 1/21/2f(x)dx=0\int_{-1/2}^{1/2}{f(x)\,dx=0}