Solveeit Logo

Question

Question: If \[f(x)=\left| \begin{matrix} {{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\\...

If f(x)=(xa)4(xa)31 (xb)4(xb)31 (xc)4(xc)31 f(x)=\left| \begin{matrix} {{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\\ {{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\\ {{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\\ \end{matrix} \right|, then f(x)=λ(xa)4(xa)21 (xb)4(xb)21 (xc)4(xc)21 f'(x)=\lambda \left| \begin{matrix} {{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\\ {{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\\ {{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\\ \end{matrix} \right|. Find the value of λ.\lambda .

Explanation

Solution

Take the matrix f(x) and find its determinant f’(x), i.e. differentiate C1{{C}_{1}} while C2{{C}_{2}} and C3{{C}_{3}} are constant plus differentiate C2{{C}_{2}} while C1{{C}_{1}} and C3{{C}_{3}} are constant. Thus, the columns become some value, apply property of determinants and solve it.

Complete step-by-step answer:
Given to us is that f(x)=(xa)4(xa)31 (xb)4(xb)31 (xc)4(xc)31 f(x)=\left| \begin{matrix} {{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\\ {{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\\ {{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\\ \end{matrix} \right| and f(x)=λ(xa)4(xa)21 (xb)4(xb)21 (xc)4(xc)21 ........(1)f'(x)=\lambda \left| \begin{matrix} {{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\\ {{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\\ {{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\\ \end{matrix} \right|........(1)
In the matrix of f(x)=(xa)4(xa)31 (xb)4(xb)31 (xc)4(xc)31 f(x)=\left| \begin{matrix} {{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{3}} & 1 \\\ {{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{3}} & 1 \\\ {{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{3}} & 1 \\\ \end{matrix} \right|
Here, C1{{C}_{1}}, C2{{C}_{2}} and C3{{C}_{3}} are the three columns of the 3×33\times 3 matrix.
Now let us differentiate column 1 and keep C2{{C}_{2}} and C3{{C}_{3}} as they are in the first. Then keep C1{{C}_{1}} and C3{{C}_{3}} constant and differentiate C2{{C}_{2}}. If we differentiate C3{{C}_{3}}, we will get the column as zero.

4{{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\\ 4{{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\\ 4{{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\\ \end{matrix} \right|+\left| \begin{matrix} {{\left( x-a \right)}^{4}} & 3{{\left( x-a \right)}^{2}} & 1 \\\ {{\left( x-b \right)}^{4}} & 3{{\left( x-b \right)}^{2}} & 1 \\\ {{\left( x-c \right)}^{4}} & 3{{\left( x-c \right)}^{2}} & 1 \\\ \end{matrix} \right|$$ $$=4\left| \begin{matrix} {{\left( x-a \right)}^{3}} & {{\left( x-a \right)}^{3}} & 1 \\\ {{\left( x-b \right)}^{3}} & {{\left( x-b \right)}^{3}} & 1 \\\ {{\left( x-c \right)}^{3}} & {{\left( x-c \right)}^{3}} & 1 \\\ \end{matrix} \right|+3\left| \begin{matrix} {{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\\ {{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\\ {{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\\ \end{matrix} \right|$$ $${{C}_{1}}$$ and $${{C}_{2}}$$ in the first determinant is same, so the value becomes zero, i.e. $${{C}_{1}}={{C}_{2}}=0$$. i.e. the determinant of a matrix with two identical columns is zero. Thus, $$f'(x)=3\left| \begin{matrix} {{\left( x-a \right)}^{4}} & {{\left( x-a \right)}^{2}} & 1 \\\ {{\left( x-b \right)}^{4}} & {{\left( x-b \right)}^{2}} & 1 \\\ {{\left( x-c \right)}^{4}} & {{\left( x-c \right)}^{2}} & 1 \\\ \end{matrix} \right|......(2)$$ Now let us compare equation (1) and (2). From this, we can say that $$\lambda =3$$. Thus, we got the value of $$\lambda =3$$. **Note:** It is one of the properties of determinants. If we have a matrix with two identical rows or columns then its determinant is equal to zero. In this question we had two columns same, i.e. $${{C}_{1}}={{C}_{2}}$$. Thus, finding its determinant comes out, to be zero at the end.