Solveeit Logo

Question

Question: If \(f(x)=\left\\{ \begin{aligned} & 2{{x}^{2}}+1,\text{ }x\le 1 \\\ & 4{{x}^{3}}-1,\text{ }...

If f(x)=\left\\{ \begin{aligned} & 2{{x}^{2}}+1,\text{ }x\le 1 \\\ & 4{{x}^{3}}-1,\text{ }x\ge 1 \\\ \end{aligned} \right\\}, then 02f(x)dx\int\limits_{0}^{2}{f(x)dx} is
(a) 473\dfrac{47}{3}
(b) 503\dfrac{50}{3}
(c) 13\dfrac{1}{3}
(d) 472\dfrac{47}{2}

Explanation

Solution

Hint:Break the limit of the integral from 0 to 1 and from 1 to 2 and then put the value of the function under their respective domain and integrate. Solve the two integrals separately.

Complete step-by-step answer:

We have been given that the function ‘2x2+12{{x}^{2}}+1’ is defined only for the values of xx less than or equal to 1 and the function ‘4x314{{x}^{3}}-1’ is defined for the values of xx greater than or equal to 1. Therefore, let us break the given limit of the integral. The given integral can be written as:
02f(x)dx=01f(x)dx+12f(x)dx\int\limits_{0}^{2}{f(x)dx}=\int\limits_{0}^{1}{f(x)dx}+\int\limits_{1}^{2}{f(x)dx}
Substituting the value of f(x)f(x) under their respective integral domains we get,
01f(x)dx+12f(x)dx=01(2x2+1)dx+12(4x31)dx\int\limits_{0}^{1}{f(x)dx}+\int\limits_{1}^{2}{f(x)dx}=\int\limits_{0}^{1}{(2{{x}^{2}}+1)dx}+\int\limits_{1}^{2}{(4{{x}^{3}}-1)dx}
Let us assume that the value of the above integral is ‘II’. Therefore,
I=01(2x2+1)dx+12(4x31)dxI=\int\limits_{0}^{1}{(2{{x}^{2}}+1)dx}+\int\limits_{1}^{2}{(4{{x}^{3}}-1)dx}
We know that, xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}. Therefore, applying this rule in the above integral, we have,
I=[2x33+x]01+[4x44x]12I=\left[ \dfrac{2{{x}^{3}}}{3}+x \right]_{0}^{1}+\left[ \dfrac{4{{x}^{4}}}{4}-x \right]_{1}^{2}
Substituting the value of suitable limits we get,
I=[(2×133+1)(2×033+0)]+[(4×2442)(4×1441)] =[23+1]+[(162)(11)] =53+14 =473 \begin{aligned} & I=\left[ \left( \dfrac{2\times {{1}^{3}}}{3}+1 \right)-\left( \dfrac{2\times {{0}^{3}}}{3}+0 \right) \right]+\left[ \left( \dfrac{4\times {{2}^{4}}}{4}-2 \right)-\left( \dfrac{4\times {{1}^{4}}}{4}-1 \right) \right] \\\ & =\left[ \dfrac{2}{3}+1 \right]+\left[ \left( 16-2 \right)-\left( 1-1 \right) \right] \\\ & =\dfrac{5}{3}+14 \\\ & =\dfrac{47}{3} \\\ \end{aligned}
Hence, option (a) is the correct answer.

Note: One may note that we have broken the given integral into two parts. One integral having limits ranging from 0 to 1 and the other having limits ranging from 0 to 2. This step was necessary because the two given functions are defined for different ranges of ‘xx’, so, we cannot integrate them under one integral sign having limit ranging from 0 to 2.