Solveeit Logo

Question

Question: If f (x) = \(\left( - \frac{1}{2},\frac{1}{9} \right)\) then –...

If f (x) = (12,19)\left( - \frac{1}{2},\frac{1}{9} \right) then –

A

[14,14]\left\lbrack - \frac{1}{4},\frac{1}{4} \right\rbrackf (x) = e–6

B

f(x)=x+2x+2f(x) = \frac{x + 2}{|x + 2|} f (x) = 2

C

R{2}R - \{ - 2\}f (x) = e–3

D

f(x)=sec(π4cos2x),<x<f(x) = \sec\left( \frac{\pi}{4}\cos^{2}x \right), - \infty < x < \infty f (x) = e–4

Answer

f(x)=sec(π4cos2x),<x<f(x) = \sec\left( \frac{\pi}{4}\cos^{2}x \right), - \infty < x < \infty f (x) = e–4

Explanation

Solution

limx\lim _ { x \rightarrow \infty } (x2+x)2x\left( \frac { x } { 2 + x } \right) ^ { 2 x } ; 1 form ⇒ lx(22+x)2x\mathrm { l } _ { \mathrm { x } \rightarrow \infty } \left( \frac { - 2 } { 2 + \mathrm { x } } \right) ^ { 2 \mathrm { x } } = e–4