Solveeit Logo

Question

Question: If f (x) = \(\lbrack(1–\sin x)^{2}f(x)\rbrack^{\frac{1}{\sin x–1}}\) is to be made continuous at x =...

If f (x) = [(1sinx)2f(x)]1sinx1\lbrack(1–\sin x)^{2}f(x)\rbrack^{\frac{1}{\sin x–1}} is to be made continuous at x = 1, then f (1) should be equal to –

A

e2

B

e

C

1/e

D

e–2

Answer

e2

Explanation

Solution

Q f(1) = f(1+)

elimh0\lim _ { h \rightarrow 0 } tan(π/4+ln(1+h)1)ln(1+h)\frac { \tan ( \pi / 4 + \ln ( 1 + \mathrm { h } ) - 1 ) } { \ln ( 1 + \mathrm { h } ) } 00\frac { 0 } { 0 }

elimh0\lim _ { h \rightarrow 0 } sec2(π/4+ln(1+h)1/1+h)1/1+h\frac { \sec ^ { 2 } ( \pi / 4 + \ln ( 1 + \mathrm { h } ) \cdot 1 / 1 + \mathrm { h } ) } { 1 / 1 + \mathrm { h } }

f(1) = e2