Solveeit Logo

Question

Mathematics Question on Application of derivatives

If f(x)=kxcosxf(x)\,=kx\,-\,\cos \,x is monotonically increasing for all xR,x\in R, then

A

k>1k>-1

B

$ k

C

k>1k>1

D

NoneoftheseNone\, of\, these

Answer

k>1k>-1

Explanation

Solution

Given, f(x)=kxcosxf(x)=kx-\cos x and xRx\in R
f(x)=k+sinxf'(x)=k+\sin x Since, the function f(x)f(x)
is monotonically increase for all
xRx\in R .
\therefore f(x)>0,xRf'(x)>0,\,\,\,\forall \,\,\,\,x\in R
\Rightarrow f(π2)>0f'\left( \frac{\pi }{2} \right)>0
\Rightarrow k+sinπ2>0k+\sin \frac{\pi }{2}>0
\Rightarrow k+1>0k+1>0
\Rightarrow k>1k>-1