Question
Mathematics Question on General and Particular Solutions of a Differential Equation
If f(x) is differentiable and ∫0t2xf(x)dx=52t5, then f(254) equals
A
52
B
−25
C
1
D
25
Answer
52
Explanation
Solution
Here, ∫0t2xf(x)dx=52t5,
Using Newton Leibnitz's formula, differentiating both
sides, we get
t^2 \\{ f(t^2)\\} \bigg \\{\frac{d}{dt}(t^2)\bigg\\}-0.f(0) \bigg\\{\frac{d}{dt}(0)\bigg\\}=2t^4
⇒t2f(t2)2t=2t4⇒f(t2)=t
∴f(254)=−52[puttingt=52]
⇒f(254)=52