Solveeit Logo

Question

Mathematics Question on Definite Integral

If f(x)=x2x2+1et2dtf(x)=\int_{x^2}^{x^2+1} e^{-t {^2}}dt then f(x) increases in

A

(2, 2)

B

no value of x

C

(0,\infty)

D

(,0)(-\infty,0)

Answer

(,0)(-\infty,0)

Explanation

Solution

Given, f(x)=x2x2+1et2dtf(x)=\int_{x^2}^{x^2+1} e^{-t {^2}}dt
On differentiating both sides using Newton's Leibnitz's
formula, we get
f'(x)=e^{-(x^2+1^2)} \bigg \\{\frac{d}{dx}(x^2+1)\bigg \\}-e^{-(x^2)^2} \bigg\\{\frac{d}{dx}(x^2)\bigg\\}
=e(x2+1)2.2xe(x2)2.2x\, \, \, \, \, \, \, \, =e^{-(x^2+1)^2} .2x-e^{-(x^2)^2}.2x
=2xe(x4+2x2+1)(1e2x2+1)\, \, \, \, \, \, \, \, =2xe^{-(x^4+2x^2+1)}(1-e^{2x^2}+1)
[where,e2x2+1>1,xande(x4+2x2+1)>0,x][where, e^{2x^2}+1 >1, \forall x \, and \, e^{-(x^4+2x^2+1)}> 0, \forall x]
f(x)>0\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, f'(x)>0
which shows 2x < 0 or x < 0 x(,0)\Rightarrow \, \, x \in(-\infty ,0)