Question
Mathematics Question on Definite Integral
If f(x)=∫x2x2+1e−t2dt then f(x) increases in
A
(2, 2)
B
no value of x
C
(0,∞)
D
(−∞,0)
Answer
(−∞,0)
Explanation
Solution
Given, f(x)=∫x2x2+1e−t2dt
On differentiating both sides using Newton's Leibnitz's
formula, we get
f'(x)=e^{-(x^2+1^2)} \bigg \\{\frac{d}{dx}(x^2+1)\bigg \\}-e^{-(x^2)^2} \bigg\\{\frac{d}{dx}(x^2)\bigg\\}
=e−(x2+1)2.2x−e−(x2)2.2x
=2xe−(x4+2x2+1)(1−e2x2+1)
[where,e2x2+1>1,∀xande−(x4+2x2+1)>0,∀x]
∴f′(x)>0
which shows 2x < 0 or x < 0 ⇒x∈(−∞,0)