Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If f(x)=1x4t2dt,f(x)=\int_{1}^{x}{\sqrt{4-{{t}^{2}}}}\,\,\,dt, then real roots of the equation xf(x)=0x-f'(x)=0 are

A

±1\pm \,\,1

B

±2\pm \,\,\sqrt{2}

C

00 and 11

D

±2\pm \,\,2

Answer

±2\pm \,\,\sqrt{2}

Explanation

Solution

The correct option is(B): ±√2.

Given, f(x)=1x4t2dtf(x)=\int_{1}^{x}{\sqrt{4-{{t}^{2}}}}\,\,dt
On differentiating w. r. t. x, we get
f(x)=4x2f'(x)=\sqrt{4-{{x}^{2}}} (1)
\therefore xf(x)=x4x2=0x-f'(x)=x-\sqrt{4-{{x}^{2}}}=0
\Rightarrow x=4x2x=\sqrt{4-{{x}^{2}}}
\Rightarrow x2=4x2{{x}^{2}}=4-{{x}^{2}}
\Rightarrow 2x2=42{{x}^{2}}=4
\Rightarrow x2=2{{x}^{2}}=2
\Rightarrow x=±2x=\pm 2
Hence, real roots of
xf(x)\\{x-f'(x)\\} and ±2\pm \sqrt{2} .