Question
Mathematics Question on Integrals of Some Particular Functions
If f(x)=∫1x4−t2dt, then real roots of the equation x−f′(x)=0 are
A
±1
B
±2
C
0 and 1
D
±2
Answer
±2
Explanation
Solution
The correct option is(B): ±√2.
Given, f(x)=∫1x4−t2dt
On differentiating w. r. t. x, we get
f′(x)=4−x2 (1)
∴ x−f′(x)=x−4−x2=0
⇒ x=4−x2
⇒ x2=4−x2
⇒ 2x2=4
⇒ x2=2
⇒ x=±2
Hence, real roots of
x−f′(x) and ±2 .