Question
Question: If f(x), g(x) and h(x) are three polynomials of degree 2 and \[\Delta \left( x \right)=\left( \begin...
If f(x), g(x) and h(x) are three polynomials of degree 2 and Δ(x)=f(x) f′(x) f′′(x) g(x)g′(x)g′′(x)h(x)h′(x)h′′(x) then the degree of polynomial Δ(x) .
& \text{A}\text{. 2} \\\ & \text{B}\text{. 3} \\\ & \text{C}\text{. 0} \\\ & \text{D}\text{. 1} \\\ \end{aligned}$$Explanation
Solution
Let us assume f(x)=ax2+bx+c,g(x)=dx2+ex+f,h(x)=gx2+hx+i. Let us consider f(x)=ax2+bx+c,g(x)=dx2+ex+f,h(x)=gx2+hx+i as equation (1), equation (2) and equation (3) respectively. Now we should find f’(x), g’(x) and h’(x). Now we should find f”’(x), g”’(x) and h”’(x). Now we should substitute all the values in Δ(x)=f(x) f′(x) f′′(x) g(x)g′(x)g′′(x)h(x)h′(x)h′′(x). Now we will find the determinant of Δ(x).
Complete step-by-step solution
Let us assume f(x)=ax2+bx+c,g(x)=dx2+ex+f,h(x)=gx2+hx+i.
Now let us consider