Solveeit Logo

Question

Mathematics Question on Functions

If f(x)=22x22x+2,xRf(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R, then f(12023)+f(22023)++f(20222023)f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots+f\left(\frac{2022}{2023}\right) is equal to

A

1011

B

2010

C

1010

D

2011

Answer

1011

Explanation

Solution

The correct answer is (A) : 1011
f(x)=4x+24x​
f(x)+f(1−x)=4x+24x​+41−x+241−x​
=4x+24x​+4+2(4x)4​
=4x+24x​+2+4x2​
=1
⇒f(x)+f(1−x)=1
Now f(20231​)+f(20232​)+f(20233​)+……+
………+f(1−20233​)+f(1−20232​)+f(1−20231​)
Now sum of terms equidistant from beginning and end is 1
Sum =1+1+1+……….+1(1011 times )
=1011