Solveeit Logo

Question

Mathematics Question on Functions

If f(x)f(y)=ln(xy)+xyf(x) - f(y) = ln\bigg(\frac{x}{y}\bigg) +x-y, then find** ** k=120f(1k2)\sum^{20}_{k=1}f'\bigg(\frac{1}{k^2}\bigg)

A

2890

B

2390

C

1245

D

None of this

Answer

2890

Explanation

Solution

The correct option is (A): 28902890

f(x)In(x)x=f(y)Inyyf(x)-In(x)-x=f(y)-In\, y-y

=f(x)In(x)x=c=f(x)-In(x)-x=c

=f(x)=c+x+Inx=f(x)=c+x+In \,x

f"(x)=0+1+1x\frac{1}{x}

After simplification we get:

20+20×21×41620+\frac{20\times21\times41}{6}

20+2870=289020+2870=2890