Question
Mathematics Question on Limits
If f(x) = f(x)=\left\\{\begin{matrix} mx^2+n, &\,\,\,\,x<0 \\\ nx+m,&\,\,\,\, 0\leq x\leq1 \\\ nx^3+m,&\,\,\,\, x>1 \end{matrix}\right.. For what integers m and n does both limx→1f(x) and limx→1 f(x) exist?
Answer
The given function is f(x)=\left\\{\begin{matrix} mx^2+n, &\,\,\,\,x<0 \\\ nx+m,&\,\,\,\, 0\leq x\leq1 \\\ nx^3+m,&\,\,\,\, x>1 \end{matrix}\right.
limx→0−f(x)=limx→0−(mx2+n)
=m(0)2+n
=n
limx→0+ f(x)= limx→0+(nx+m)
= n(0)+m
= m.
Thus, limx→0f(x) exists if m = n.
limx→0− f(x)= limx→1−(nx+m)
= n(1) +m
=m+n
limx→1+ f(x)= limx→1+(nx3+m)
= n(1) +m
=m+n
∴ limx→1−f(x)= limx→1+ f(x) = limx→1 f(x).
Thus,limx→1f(x) exists for any integral value of m and n.