Solveeit Logo

Question

Mathematics Question on Limits

If f(x) = f(x)=\left\\{\begin{matrix} mx^2+n, &\,\,\,\,x<0 \\\ nx+m,&\,\,\,\, 0\leq x\leq1 \\\ nx^3+m,&\,\,\,\, x>1 \end{matrix}\right.. For what integers m and n does both limx1\lim_{x\rightarrow 1}f(x) and limx1\lim_{x\rightarrow 1} f(x) exist?

Answer

The given function is f(x)=\left\\{\begin{matrix} mx^2+n, &\,\,\,\,x<0 \\\ nx+m,&\,\,\,\, 0\leq x\leq1 \\\ nx^3+m,&\,\,\,\, x>1 \end{matrix}\right.
limx0\lim_{x\rightarrow 0^-}f(x)=limx0\lim_{x\rightarrow 0^-}(mx2+n)
=m(0)2+n
=n
limx0+\lim_{x\rightarrow 0^+} f(x)= limx0+\lim_{x\rightarrow 0^+}(nx+m)
= n(0)+m
= m.
Thus, limx0\lim_{x\rightarrow 0}f(x) exists if m = n.
limx0\lim_{x\rightarrow 0^-} f(x)= limx1\lim_{x\rightarrow 1^-}(nx+m)
= n(1) +m
=m+n
limx1+\lim_{x\rightarrow 1^+} f(x)= limx1+\lim_{x\rightarrow 1^+}(nx3+m)
= n(1) +m
=m+n
limx1\lim_{x\rightarrow 1^-}f(x)= limx1+\lim_{x\rightarrow 1^+} f(x) = limx1\lim_{x\rightarrow 1} f(x).
Thus,limx1\lim_{x\rightarrow 1}f(x) exists for any integral value of m and n.