Solveeit Logo

Question

Mathematics Question on Integration by Parts

If f(x)+f(πx)=π2f(x) + f(\pi-x) = \pi^{2} then 0πf(x)sinxdx_{0}\int^{\pi}f(x) sinx dx ?

A

π2

B

π24\frac{\pi_2}{4}

C

2π2

D

π28\frac{\pi_2}{8}

Answer

π2

Explanation

Solution

The correct option is (A): π2
I=0πf(x)sinxdxI=\int_0^\pi f(x)sinxdx
I=0πf(πx)sinxdxI=\int_0^\pi f(\pi-x)sinxdx
2I=0πsin(x)(f(x)+f(πx))dx2I=\int_0^\pi sin(x)(f(x)+f(\pi-x))dx
2I=π20πsinxdx2I=\pi^2\int_0^\pi sinxdx
2I=2π20πsinxdx2I=2\pi^2\int_0^\pi sinxdx
I=π2(cosx)0π2I=\pi^2(-cos x)^\frac{\pi}{2}_0
I=π2I=\pi^2