Question
Question: If \(f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }},\) find the value of \(8f({...
If f(x)=2cos2θ1−sin2θ+cos2θ, find the value of 8f(11∘)×f(34∘) is
Solution
Hint: In this question first we simplify the given function into the simplest form by using trigonometric formulas of sin2θ,cos2θ . Then find the values of f(34∘) and f(11∘)in terms of simplest form and finally put in 8f(11∘)×f(34∘) to get answer.
Complete step-by-step answer:
We know
⇒sin2θ=2sinθcosθeq.1 ⇒cos2θ=cos2θ−sin2θeq.2
⇒f(x)=2cos2θ1−sin2θ+cos2θ ⇒f(x)=2(cos2θ−sin2θ)(cos2θ + sin2θ)−2sinθcosθ+cos2θ−sin2θ cos2θ−sin2θ=1 ⇒f(x)=2(cos2θ−sin2θ)(cos2θ + sin2θ−2sinθcosθ)+cos2θ−sin2θ ⇒f(x)=2(cos2θ−sin2θ)(cosθ−sinθ)2+cos2θ−sin2θ
∵cos2θ−sin2θ=(cosθ + sinθ)(cosθ−sinθ)
⇒f(x)=2(cosθ + sinθ)(cosθ−sinθ)(cosθ−sinθ)2+(cosθ + sinθ)(cosθ−sinθ)
On cancelling the common (cosθ−sinθ) from above expression, we get
⇒f(x)=2(cosθ + sinθ)cosθ−sinθ+cosθ + sinθ ⇒f(x)=2(cosθ + sinθ)2cosθ ⇒f(x)=cosθ + sinθcosθ
Now, on dividing numerator and denominator by cosθ, we get,
⇒f(x)=1 + tanθ1→(3)∵ tanθ = cosθsinθ
Now, we find f(11∘) and f(34∘)
⇒f(11∘)=1+tan(11∘)1 eq.4
And
⇒f(34∘)=1+tan(34∘)1 eq.5
We can rewrite tan(34∘)=tan(45−11)∘ eq.6
Now using formula tan(a−b)=1+tana.tanbtana−tanb,we can write above equation as
⇒tan(45−11)∘=1+tan45∘.tan11∘tan45∘−tan11∘ ⇒tan(45−11)∘=1+tan11∘1−tan11∘ tan45∘=1 eq.7
Now using eq.6 and eq.7 we can rewrite eq.5 as
⇒f(34∘)=1+tan(34∘)1 ⇒f(34∘)=1+(1+tan11∘1−tan11∘)1 ⇒f(34∘)=21+tan11∘ eq.8
Now ,put values f(34∘) and f(11∘) from eq.8 and eq.4 in
⇒8f(11∘)×f(34∘) = 8×1+tan(11∘)1×21+tan11∘ ⇒8f(11∘)×f(34∘) = 4
Hence, the value of 8f(11∘)×f(34∘) is 4.
Note: Whenever you get this type of problem the key concept of solving this is to check what trick or pattern is involved in it like in this question relation between 34∘(45 - 11)∘ and 11∘ . You have to learn as much as possible trigonometric formulas like in this we use trigonometric formulas of sin2θ,cos2θ, tan(a−b).