Solveeit Logo

Question

Question: If \(f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }},\) find the value of \(8f({...

If f(x)=1sin2θ+cos2θ2cos2θ,f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }}, find the value of 8f(11)×f(34)8f({11^ \circ }) \times f({34^ \circ }) is

Explanation

Solution

Hint: In this question first we simplify the given function into the simplest form by using trigonometric formulas of sin2θ{\text{sin2}}\theta ,cos2θ\cos {\text{2}}\theta . Then find the values of f(34) and f(11)f({34^ \circ }){\text{ and f(1}}{{\text{1}}^ \circ })in terms of simplest form and finally put in 8f(11)×f(34)8f({11^ \circ }) \times f({34^ \circ }) to get answer.

Complete step-by-step answer:
We know
sin2θ=2sinθcosθeq.1 cos2θ=cos2θsin2θeq.2  \Rightarrow {\text{sin2}}\theta = 2\sin \theta \cos \theta {\text{eq}}{\text{.1}} \\\ \Rightarrow \cos {\text{2}}\theta = {\cos ^2}\theta - {\sin ^2}\theta {\text{eq}}{\text{.2}} \\\
f(x)=1sin2θ+cos2θ2cos2θ f(x)=(cos2θ + sin2θ)2sinθcosθ+cos2θsin2θ2(cos2θsin2θ)  cos2θsin2θ=1 f(x)=(cos2θ + sin2θ2sinθcosθ)+cos2θsin2θ2(cos2θsin2θ) f(x)=(cosθsinθ)2+cos2θsin2θ2(cos2θsin2θ)  \Rightarrow f(x) = \dfrac{{1 - \sin 2\theta + \cos 2\theta }}{{2\cos 2\theta }} \\\ \Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta ) - 2\sin \theta \cos \theta + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}}{\text{ \\{ }}{\cos ^2}\theta - {\sin ^2}\theta = 1\\} \\\ \Rightarrow f(x) = \dfrac{{({{\cos }^2}\theta {\text{ + }}{{\sin }^2}\theta - 2\sin \theta \cos \theta {\text{)}} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\\ \Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + {{\cos }^2}\theta - {{\sin }^2}\theta }}{{2({{\cos }^2}\theta - {{\sin }^2}\theta )}} \\\
cos2θsin2θ=(cosθ + sinθ)(cosθsinθ)  \because {\cos ^2}\theta - {\sin ^2}\theta = (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}} \\\
f(x)=(cosθsinθ)2+(cosθ + sinθ)(cosθsinθ)2(cosθ + sinθ)(cosθsinθ)  \Rightarrow f(x) = \dfrac{{{{(\cos \theta - \sin \theta {\text{)}}}^2} + (\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)(}}\cos \theta - \sin \theta {\text{)}}}} \\\
On cancelling the common (cosθsinθ){\text{(}}\cos \theta - \sin \theta {\text{)}} from above expression, we get
f(x)=cosθsinθ+cosθ + sinθ2(cosθ + sinθ) f(x)=2cosθ2(cosθ + sinθ) f(x)=cosθcosθ + sinθ  \Rightarrow f(x) = \dfrac{{\cos \theta - \sin \theta + \cos \theta {\text{ + }}\sin \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\\ \Rightarrow f(x) = \dfrac{{2\cos \theta }}{{2(\cos \theta {\text{ + }}\sin \theta {\text{)}}}} \\\ \Rightarrow f(x) = \dfrac{{\cos \theta }}{{\cos \theta {\text{ + }}\sin \theta }} \\\
Now, on dividing numerator and denominator by cosθ\cos \theta , we get,
f(x)=11 + tanθ(3) tanθ = sinθcosθ\Rightarrow f(x) = \dfrac{1}{{{\text{1 + tan}}\theta }} \to (3) {\because \text{\\{ tan}}\theta {\text{ = }}\dfrac{{{\text{sin}}\theta }}{{{\text{cos}}\theta }}\\}
Now, we find f(11) and f(34) f({11^ \circ }){\text{ and }}f({34^ \circ }){\text{ }}
f(11)=11+tan(11) eq.4\Rightarrow f({11^ \circ }) = \dfrac{1}{{1 + \tan ({{11}^ \circ })}}{\text{ eq}}{\text{.4}}
And
f(34)=11+tan(34)\Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}} eq.5
We can rewrite tan(34)=tan(4511)\tan ({34^ \circ }) = \tan {(45 - 11)^ \circ } eq.6
Now using formula tan(ab)=tanatanb1+tana.tanb\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a.\tan b}},we can write above equation as
tan(4511)=tan45tan111+tan45.tan11 tan(4511)=1tan111+tan11  tan45=1 eq.7  \Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{\tan {{45}^ \circ } - \tan {{11}^ \circ }}}{{1 + \tan {{45}^ \circ }.\tan {{11}^ \circ }}} \\\ \Rightarrow \tan {(45 - 11)^ \circ } = \dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}}{\text{ \\{ }}\tan {45^ \circ } = 1\\} {\text{ eq}}{\text{.7}} \\\
Now using eq.6 and eq.7 we can rewrite eq.5 as
f(34)=11+tan(34) f(34)=11+(1tan111+tan11) f(34)=1+tan112 eq.8  \Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + \tan ({{34}^ \circ })}} \\\ \Rightarrow f({34^ \circ }) = \dfrac{1}{{1 + (\dfrac{{1 - \tan {{11}^ \circ }}}{{1 + \tan {{11}^ \circ }}})}} \\\ \Rightarrow f({34^ \circ }) = \dfrac{{1 + \tan {{11}^ \circ }}}{2}{\text{ eq}}{\text{.8}} \\\
Now ,put values f(34) and f(11)f({34^ \circ }){\text{ and f(1}}{{\text{1}}^ \circ }) from eq.8 and eq.4 in
8f(11)×f(34) = 8×11+tan(11)×1+tan112 8f(11)×f(34) = 4  \Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = 8}} \times \dfrac{1}{{1 + \tan ({{11}^ \circ })}} \times \dfrac{{1 + \tan {{11}^ \circ }}}{2} \\\ \Rightarrow 8f({11^ \circ }) \times f({34^ \circ }){\text{ = }}4 \\\
Hence, the value of 8f(11)×f(34)8f({11^ \circ }) \times f({34^ \circ }) is 44.

Note: Whenever you get this type of problem the key concept of solving this is to check what trick or pattern is involved in it like in this question relation between 34(45 - 11) and 11{34^ \circ }{{\text{(45 - 11)}}^ \circ }{\text{ and 1}}{{\text{1}}^ \circ } . You have to learn as much as possible trigonometric formulas like in this we use trigonometric formulas of sin2θ,cos2θ,\sin 2\theta ,\cos 2\theta , tan(ab)\tan (a - b).