Solveeit Logo

Question

Question: If \(f ( x ) = ( \cos x + i \sin x ) ( \cos 3 x + i \sin 3 x ) \ldots\) \((\cos(2n - 1)x + i\sin(2...

If f(x)=(cosx+isinx)(cos3x+isin3x)f ( x ) = ( \cos x + i \sin x ) ( \cos 3 x + i \sin 3 x ) \ldots

(cos(2n1)x+isin(2n1)x),(\cos(2n - 1)x + i\sin(2n - 1)x), then ff^{'^{'}} is equal to

A

n2f(x)n^{2}f(x)

B

n4f(x)- n^{4}f(x)

C

n2f(x)- n^{2}f(x)

D

n4f(x)n^{4}f(x)

Answer

n4f(x)- n^{4}f(x)

Explanation

Solution

We have,

}{+ .... + (2n - 1)x) = \cos n^{2}x + i\sin n^{2}x}$$ ⇒ $f^{'}(x) = - n^{2}(\sin n^{2}x) + n^{2}(i\cos n^{2}x)$ ⇒ $f^{'^{'4}{\cos n^{2}}^{4}\sin n^{2}}$ ⇒ $f^{'^{'4}\cos n^{2}\sin n^{2}}$ ⇒ $f^{'^{'4}}$