Solveeit Logo

Question

Question: If f(x) = \( {\cos ^{ - 1}}\left( {x - {x^2}} \right) + \sqrt {1 + \dfrac{1}{{\left| x \right|}}} + ...

If f(x) = cos1(xx2)+1+1x+1x21{\cos ^{ - 1}}\left( {x - {x^2}} \right) + \sqrt {1 + \dfrac{1}{{\left| x \right|}}} + \dfrac{1}{{{x^2} - 1}} , then find the domain of f(x)
A. [2,(152)]\left[ {\sqrt 2 ,\left( {\dfrac{{1 - \sqrt 5 }}{2}} \right)} \right]
B. [2,(1+52)]\left[ {\sqrt 2 ,\left( {\dfrac{{1 + \sqrt 5 }}{2}} \right)} \right]
C. [2,(1±52)]\left[ { - \sqrt 2 ,\left( {\dfrac{{1 \pm \sqrt 5 }}{2}} \right)} \right]
D.None of these

Explanation

Solution

Hint : First, we will divide this function in 3 parts and then will solve them separately and find their domain. Then, we will get 3 different domains. So, we will find the intersection of all the three domains. That value of intersection will be the final answer.

Complete step-by-step answer :
Divide this function in three parts.
f(x)=f1(x)+f2(x)+f3(x)f\left( x \right) = {f_1}\left( x \right) + {f_2}\left( x \right) + {f_3}\left( x \right)
Now, we will find the domain of each part of the divided section.
First take f1(x){f_1}\left( x \right)
f1(x)=cos1(xx2){f_1}\left( x \right) = {\cos ^{ - 1}}\left( {x - {x^2}} \right)
Domain of cos1{\cos ^{ - 1}} is
1cos11- 1 \leqslant {\cos ^{ - 1}} \leqslant 1
From this, we can also get
1xx2- 1 \leqslant x - {x^2}
x2x10{x^2} - x - 1 \leqslant 0
Now x2x1{x^2} - x - 1 is a quadratic equation. We will find its roots using the formula x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
In this quadratic equation value a is 1, b is -1 and c is also -1.
x=(1)±(1)24(1)(1)2x = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4\left( 1 \right)\left( { - 1} \right)} }}{2}
x=1±52x = \dfrac{{1 \pm \sqrt 5 }}{2}
So, the domain of f1(x){f_1}\left( x \right) is
152x1+52\dfrac{{1 - \sqrt 5 }}{2} \leqslant x \leqslant \dfrac{{1 + \sqrt 5 }}{2}
Now, we will find the domain of f2(x){f_2}\left( x \right)
f2(x)=11x{f_2}\left( x \right) = \sqrt {1 - \dfrac{1}{{\left| x \right|}}}
Any term inside the root is equal to 0 or greater than 0. So,
11x01 - \dfrac{1}{{\left| x \right|}} \geqslant 0
11x1 \geqslant \dfrac{1}{{\left| x \right|}}
x1\left| x \right| \geqslant 1
The domain of f2(x){f_2}\left( x \right) is [x1,x1]\left[ {x \leqslant - 1,x \geqslant 1} \right]
Now, we will find the domain of f3(x){f_3}\left( x \right)
f3(x)=1x21{f_3}\left( x \right) = \dfrac{1}{{{x^2} - 1}}
X2 can not be equal to 1 as if it will be equal to 1, then the denominator will become 0. So,
The domain of f3(x){f_3}\left( x \right) is:
[x2<1,x22]\left[ {{x^2} < 1,{x^2} \geqslant 2} \right]
By combining all the three domains we get,
[2,1+52]\left[ {\sqrt 2 ,\dfrac{{1 + \sqrt 5 }}{2}} \right]
The final domain of the function is [2,1+52]\left[ {\sqrt 2 ,\dfrac{{1 + \sqrt 5 }}{2}} \right] .
So, option (B) is the correct answer.
So, the correct answer is “Option B”.

Note : The domain of a function corresponds to the possible values of the independent variable which is x in this case. For this, the entire function is defined. The different values of x define the function.