Solveeit Logo

Question

Mathematics Question on Determinants

If f(x)=x32x2+11+3x 3x2+22xx3+6 x3x4x22f(x) = \begin{vmatrix} x^3 & 2x^2 + 1 & 1 + 3x \\\ 3x^2 + 2 & 2x & x^3 + 6 \\\ x^3 - x & 4 & x^2 - 2 \end{vmatrix} for all xRx \in \mathbb{R}, then 2f(0)+f(0)2f(0) + f'(0) is equal to

A

48

B

24

C

42

D

18

Answer

42

Explanation

Solution

f(0)=011 206 042=12f(0) = \begin{vmatrix} 0 & 1 & 1 \\\ 2 & 0 & 6 \\\ 0 & 4 & -2 \end{vmatrix} = 12 f(x)=3x24x3 x32x2+11+3x x3x4x22\+x32x2+11+3x 6x2x3x2 x3x4x22\+3x2+22xx3+6 3x2102x x3x4x22f'(x) = \begin{vmatrix} 3x^2 & 4x & 3 \\\ x^3 & 2x^2 + 1 & 1 + 3x \\\ x^3 - x & 4 & x^2 - 2 \end{vmatrix} \+ \begin{vmatrix} x^3 & 2x^2 + 1 & 1 + 3x \\\ 6x & 2x & 3x^2 \\\ x^3 - x & 4 & x^2 - 2 \end{vmatrix} \+ \begin{vmatrix} 3x^2 + 2 & 2x & x^3 + 6 \\\ 3x^2 - 1 & 0 & 2x \\\ x^3 - x & 4 & x^2 - 2 \end{vmatrix}

therefore

003 206 042\+011 020 042\+011 206 100\begin{vmatrix} 0 & 0 & 3 \\\ 2 & 0 & 6 \\\ 0 & 4 & -2 \end{vmatrix} \+ \begin{vmatrix} 0 & 1 & 1 \\\ 0 & 2 & 0 \\\ 0 & 4 & -2 \end{vmatrix} \+ \begin{vmatrix} 0 & 1 & 1 \\\ 2 & 0 & 6 \\\ -1 & 0 & 0 \end{vmatrix} =246=18= 24 - 6 = 18

therefore 2f(0)+f(0)=422f(0) + f'(0) = 42