Question
Mathematics Question on Determinants
If f(x)=x3 3x2+2 x3−x2x2+12x41+3xx3+6x2−2 for all x∈R, then 2f(0)+f′(0) is equal to
A
48
B
24
C
42
D
18
Answer
42
Explanation
Solution
f(0)=0 2 010416−2=12 f′(x)=3x2 x3 x3−x4x2x2+1431+3xx2−2\+x3 6x x3−x2x2+12x41+3x3x2x2−2\+3x2+2 3x2−1 x3−x2x04x3+62xx2−2
therefore
0 2 000436−2\+0 0 012410−2\+0 2 −1100160 =24−6=18
therefore 2f(0)+f′(0)=42