Solveeit Logo

Question

Mathematics Question on Determinants

If f(x)=2cos4x2sin4x3+sin22x 3+2cos4x2sin4xsin22x 2cos4x3+2sin4xsin22xf(x) = \begin{vmatrix} 2 \cos^4 x & 2 \sin^4 x & 3 + \sin^2 2x \\\ 3 + 2 \cos^4 x & 2 \sin^4 x & \sin^2 2x \\\ 2 \cos^4 x & 3 + 2 \sin^4 x & \sin^2 2x \end{vmatrix} then 15f(0)\frac{1}{5} f'(0) is equal to

A

0

B

1

C

2

D

6

Answer

0

Explanation

Solution

By simplifying the determinant using row operations:

R2R2R1R_2 \rightarrow R_2 - R_1, R3R3R1R_3 \rightarrow R_3 - R_1

we find that f(x)f(x) is constant. Therefore, f(x)=0f'(x) = 0.

Thus,

15f(0)=0\frac{1}{5} f'(0) = 0