Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If f(x)={x+a,x0 x4,x>0f(x)=\begin{cases} x+a, & x \leq 0 \\\ |x-4|, & x\gt0\end{cases} and
g(x)={x+1,x<0 (x4)2+b,x0g(x)= \begin{cases}x+1 & , x\lt0 \\\ (x-4)^2+b, & x \geq 0\end{cases}
are continuous on RR, then (gof)(2)+(fog)(2)(gof) (2)+(fog)(-2) is equal to:

A

-10

B

10

C

8

D

-8

Answer

-8

Explanation

Solution

f(x)={x+a,x0 x4,x>0f(x)=\begin{cases} x+a, & x \leq 0 \\\ |x-4|, & x\gt0\end{cases}
g(x)={x+1,x<0 (x4)2+b,x0g(x)= \begin{cases}x+1 & , x\lt0 \\\ (x-4)^2+b, & x \geq 0\end{cases}

For continuity a=4a = 4 and b=15b = –15
g(f(2))+f(g(2))=g(2)+f(1)=8g(f(2)) + f(g(-2)) = g(2) + f(-1) = -8

The correct option is (D): -8