Solveeit Logo

Question

Mathematics Question on Functions

If
f(x)={x+a,x0 x4,x>0f(x) = \begin{cases} x + a, & x \leq 0 \\\ |x - 4|, & x > 0 \end{cases} and g(x)={x+1,x<0 (x4)2+b,x0g(x) = \begin{cases} x + 1, & x < 0 \\\ (x - 4)^2 + b, & x \geq 0 \end{cases}
are continuous on R, then (gof) (2) + (fog) (–2) is equal to

A

-10

B

10

C

8

D

-8

Answer

-8

Explanation

Solution

f(x)={x+a,x0 x4,x>0f(x) = \begin{cases} x + a, & x \leq 0 \\\ |x - 4|, & x > 0 \end{cases} andg(x)={x+1,x<0 (x4)2+b,x0g(x) = \begin{cases} x + 1, & x < 0 \\\ (x - 4)^2 + b, & x \geq 0 \end{cases}
∵ f(x) and g(x) are continuous on R
∴ a = 4 and b = 1 – 16 = –15
then (gof)(2) + (fog) (–2)
= g(2) + f(–1)
= –11 + 3 = – 8
So, the correct option is (D): -8