Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If f(x)={x3sin(1x),x0 0,x=0f(x) = \begin{cases} x^3 \sin\left(\frac{1}{x}\right), & x \neq 0 \\\ 0, & x = 0 \end{cases}, then:

A

f(0)=1f''(0) = 1

B

f(2π)=24π22πf''\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}

C

f(2π)=12π22πf''\left(\frac{2}{\pi}\right) = \frac{12 - \pi^2}{2\pi}

D

f(0)=0f''(0) = 0

Answer

f(2π)=24π22πf''\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}

Explanation

Solution

The given function is:

f(x)=x3sin(1x)xcos(1x).f(x) = x^3 \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right).

The second derivative of f(x)f(x) is computed as:

f(x)=6xsin(1x)3cos(1x)cos(1x)+sin(1x)(cos(1x)).f''(x) = 6x \sin\left(\frac{1}{x}\right) - 3 \cos\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right) \left(-\cos\left(\frac{1}{x}\right)\right).

Substitute x=2πx = \frac{2}{\pi}:

f(2π)=6(2π)sin(π2)3cos(π2)cos(π2).f''\left(\frac{2}{\pi}\right) = 6\left(\frac{2}{\pi}\right) \sin\left(\frac{\pi}{2}\right) - 3 \cos\left(\frac{\pi}{2}\right) - \cos\left(\frac{\pi}{2}\right).

Simplify:

f(2π)=12ππ22π=24π22π.f''\left(\frac{2}{\pi}\right) = \frac{12}{\pi} - \frac{\pi^2}{2\pi} = \frac{24 - \pi^2}{2\pi}.

Thus, the final value is:

f(2π)=24π22π.f''\left(\frac{2}{\pi}\right) = \frac{24 - \pi^2}{2\pi}.