Question
Mathematics Question on Trigonometric Identities
If f(x)={x3sin(x1), 0,x=0x=0, then:
A
f′′(0)=1
B
f′′(π2)=2π24−π2
C
f′′(π2)=2π12−π2
D
f′′(0)=0
Answer
f′′(π2)=2π24−π2
Explanation
Solution
The given function is:
f(x)=x3sin(x1)−xcos(x1).
The second derivative of f(x) is computed as:
f′′(x)=6xsin(x1)−3cos(x1)−cos(x1)+sin(x1)(−cos(x1)).
Substitute x=π2:
f′′(π2)=6(π2)sin(2π)−3cos(2π)−cos(2π).
Simplify:
f′′(π2)=π12−2ππ2=2π24−π2.
Thus, the final value is:
f′′(π2)=2π24−π2.