Question
Mathematics Question on Continuity
If f(x)={x2+α\[2ex]2x2+1+βfor x≥0forx<0 is continuous at x = 0 and f(21)=2 then α2+β2 is
A
3
B
258
C
825
D
31
Answer
825
Explanation
Solution
we have
f(x)={x2+α\[2ex]2x2+1+βfor x≥0forx<0
is continuous at x=0
∴x→0−limf(x)=x→0+limf(x)=f(0)
⇒x→0−limx2+α=x→0+lim2x2+1+β=α
[∵f(0)=α]
⇒α=2+β
⇒α−β=2…(i)
Given f(21)=2
f(21)=(21)2+α[∵21>0]
⇒2=41+α
⇒α=47
On putting the value of a in E (i), we get
β=47−2=−41
Hence α2+β2=(47)2+(4−1)2
=1649+1=1650=825
Therefore, the correct option is (C): 825