Solveeit Logo

Question

Mathematics Question on Continuity

If f(x)={x2+αfor x0\[2ex]2x2+1+βforx<0f(x) = \begin{cases} x^2 + \alpha & \text{for } x \ge 0 \\\[2ex] 2\sqrt{x^2 + 1} + \beta & \text{for} x < 0 \end{cases} is continuous at x = 0 and f(12)=2f \left(\frac{1}{2} \right) = 2 then α2+β2\alpha^2+ \beta^2 is

A

3

B

825 \frac{8}{25}

C

258 \frac{25}{8}

D

13 \frac{1}{3}

Answer

258 \frac{25}{8}

Explanation

Solution

we have
f(x)={x2+αfor x0\[2ex]2x2+1+βforx<0f(x) = \begin{cases} x^2 + \alpha & \text{for } x \ge 0 \\\[2ex] 2\sqrt{x^2 + 1} + \beta & \text{for} x < 0 \end{cases}

is continuous at x=0x = 0
limx0f(x)=limx0+f(x)=f(0)\therefore \displaystyle\lim_{x \to 0^-} f(x) = \displaystyle\lim_{x \to 0^+} f(x) = f(0)
limx0x2+α=limx0+2x2+1+β=α\Rightarrow \displaystyle\lim_{x \to 0^-} x^2 + \alpha = \displaystyle\lim_{x\to0^+} 2\sqrt{x^2 + 1} + \beta = \alpha
[f(0)=α][ \because f(0) = \alpha]
α=2+β\Rightarrow \alpha = 2 + \beta
αβ=2(i)\Rightarrow \alpha - \beta = 2\,\dots (i)
Given f(12)=2f(\frac{1}{2}) = 2
f(12)=(12)2+α[12>0]f(\frac{1}{2}) = (\frac{1}{2})^2 + \alpha \,\,\left[\because \frac{1}{2} > 0\right]
2=14+α\Rightarrow 2 = \frac{1}{4} + \alpha
α=74\Rightarrow \alpha = \frac{7}{4}
On putting the value of a in E (i), we get
β=742=14\beta = \frac{7}{4} - 2 = -\frac{1}{4}
Hence α2+β2=(74)2+(14)2\alpha^2 + \beta^2 = (\frac{7}{4})^2 + (\frac{-1}{4})^2
=49+116=5016=258= \frac{49+1}{16} = \frac{50}{16} = \frac{25}{8}

Therefore, the correct option is (C): 258\frac{25}{8}