Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If f(x)={e3x14xforx0 k+x4for x=0f(x) = \begin{cases} \frac{e^{3x} - 1}{4x} & \quad \text{for} x \neq 0 \\\ \frac{k + x}{4} & \quad \text{for } x= 0 \end{cases} is continuous at x=0x = 0, then k=k =

A

5

B

3

C

2

D

0

Answer

3

Explanation

Solution

If f(x)={e3x14xforx0 k+x4for x=0f(x) = \begin{cases} \frac{e^{3x} - 1}{4x} & \quad \text{for} x \neq 0 \\\ \frac{k + x}{4} & \quad \text{for } x= 0 \end{cases} is continuous at x=0x = 0,
limx0+f(x)=limx0f(x)=f(0)\therefore \:\:\: \displaystyle\lim_{x\to0+}f\left(x\right) = \displaystyle\lim _{x\to 0-}f\left(x\right) =f\left(0\right)
limx0+e3x14x=k4\Rightarrow \displaystyle\lim _{x\to 0+} \frac{e^{3x} - 1}{4x} = \frac{k}{4}
limx0+e3h14h=k4\Rightarrow \displaystyle\lim _{x\to 0+} \frac{e^{3h} - 1}{4h} = \frac{k}{4} (00from)\left( \frac{0}{0} \, from \right)
Applying L-Hospital's Rule,
limh03e3h4=k4k=3\Rightarrow \displaystyle\lim_{h \rightarrow0} \frac{3e^{3h}}{4} = \frac{k}{4} \Rightarrow k=3