Solveeit Logo

Question

Mathematics Question on Relations and functions

If f(x)={2+2x;x(1,0) 1x3;x[0,3)f(x) = \begin{cases} 2+2x & ;x∈(-1,0)\\\ 1-\frac x3 & ;x∈[0,3) \end{cases} and g(x)={x;x[0,1) x;x(3,0)g(x) = \begin{cases} x & ;x∈[0,1)\\\ -x & ;x∈(-3,0) \end{cases}. Then range of fog(x)fog(x) is

A

[0, 1]

B

[-1,1]

C

(0,1]

D

(-1,1)

Answer

(0,1]

Explanation

Solution

To find the range of f(g(x))f(g(x)), we start by evaluating g(x)g(x) and then substitute it into f(x)f(x) according to the intervals provided.

Evaluate g(x)g(x):
g(x)={x,x[0,1] x,x(3,0)g(x) = \begin{cases} x, & x \in [0, 1] \\\ -x, & x \in (-3, 0) \end{cases}
For x[0,1]x \in [0, 1], g(x)=xg(x) = x which gives g(x)[0,1]g(x) \in [0, 1].
For x(3,0)x \in (-3, 0), g(x)=xg(x) = -x which gives g(x)(0,3]g(x) \in (0, 3].
Therefore, the range of g(x)g(x) is (0,3](0, 3].

Since g(x)(0,3]g(x) \in (0, 3], we use the definition of f(x)f(x) for x[0,3]x \in [0, 3]:
f(g(x))=1g(x)3f(g(x)) = 1 - \frac{g(x)}{3}

Determine the range of f(g(x))f(g(x)) by substituting values from the range of g(x)g(x). For g(x)=0g(x) = 0, f(g(x))=103=1f(g(x)) = 1 - \frac{0}{3} = 1. For g(x)=3g(x) = 3, f(g(x))=133=0f(g(x)) = 1 - \frac{3}{3} = 0. Thus, as g(x)g(x) varies over the interval (0,3](0, 3], f(g(x))f(g(x)) varies over the interval [0,1][0, 1].

The range of f(g(x))f(g(x)) is [0,1][0, 1].