Question
Mathematics Question on Matrices
If F(x)= cosxsinx\0sinxcosx0001and F(y)=cosysiny\0−sinycosy0001,show that F(x)+F(y)=F(x+y)
Answer
F(x)=cosxsinx\0−sinxcosx0001,F(y)=cosysiny\0−sinycosy0001
F (x+y)=cos(x+y)sin(x+y)\0−sin(x+y)cos(x+y)0001
F(x)F(y)=\begin{bmatrix}\cos x&-\sin x&0\\\\\sin x&cos x&0\\\0&0&1\end{bmatrix}$$\begin{bmatrix}\cos y&-\sin y&0\\\\\sin y&cos y&0\\\0&0&1\end{bmatrix}
=cosxcosy−sinxsiny+0sinxcosy+cosxsiny\0−cosxsiny−sinxcosy+0−sinxsiny+cosxcosy+00000
=cos(x+y)sin(x+y)\0−sin(x+y)cos(x+y)0001
=F(x+y)
∴ F(x)+F(y)=F(x+y)