Question
Question: If f(x) = b\[{{\text{e}}^{{\text{ax}}}}\]+ a\[{{\text{e}}^{{\text{bx}}}}\], then \({{\text{f}}^{''}}...
If f(x) = beax+ aebx, then f′′(0) =
A. 0 B. 2ab C. ab(a + b) D. ab
Solution
Hint - To solve this question we differentiate the equation f(x) twice. Then we substitute 0 in place of x to determine the answer.
Complete step-by-step answer:
Given f(x) = beax+ aebx
⟹f’(x) = dxdf = b{{\text{e}}^{{\text{ax}}}}$$$\dfrac{{\text{d}}}{{{\text{dx}}}}$(ax) +a{{\text{e}}^{{\text{bx}}}}$$$\dfrac{{\text{d}}}{{{\text{dx}}}}(bx) = b$${{\text{e}}^{{\text{ax}}}}$$a +a$${{\text{e}}^{{\text{bx}}}}$$b = ab ($${{\text{e}}^{{\text{ax}}}}$$+ $${{\text{e}}^{{\text{bx}}}}$$)
(\dfrac{{\text{d}}}{{{\text{dx}}}}\left( {{{\text{e}}^{\text{x}}}} \right) = {{\text{e}}^{\text{x}}})⟹f“(x)=\dfrac{{{{\text{d}}^2}{\text{f}}}}{{{\text{d}}{{\text{x}}^2}}}$ = ab ( aeax + ebxb)
⟹f “(0) = ab(e0a+e0b) (e0=1)
⟹f”(0) = ab (a+b)
Note: In order to solve this type of question the key is to carefully differentiate the equation.
Differentiation is a process of finding a function that outputs the rate of change of one variable with respect to another variable.
The derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus.