Solveeit Logo

Question

Question: If \[f(x) = 7{\tan ^8}x + 7{\tan ^6}x - 3\tan {^4}x - 3{\tan ^2}x\]for all \[x \in ( - \dfrac{\pi }{...

If f(x)=7tan8x+7tan6x3tan4x3tan2xf(x) = 7{\tan ^8}x + 7{\tan ^6}x - 3\tan {^4}x - 3{\tan ^2}xfor all x(π2,π2)x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2}), then the correct expression(s) is/are
A.0π4xf(x)dx=112\int\limits_0^{\dfrac{\pi }{4}} {xf(x)dx = \dfrac{1}{{12}}}
B.0π4f(x)dx=0\int\limits_0^{\dfrac{\pi }{4}} {f(x)dx = 0}
C.0π4xf(x)dx=16\int\limits_0^{\dfrac{\pi }{4}} {xf(x)dx = \dfrac{1}{6}}
D.0π4xf(x)dx=1\int\limits_0^{\dfrac{\pi }{4}} {xf(x)dx = 1}

Explanation

Solution

Use the trigonometric formulas as 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x, also if possible take the terms common and simplify them as much as possible. Hence use the substitution method for integration as tanx=t,sec2xdx=dt\tan x = t,{\sec ^2}xdx = dtand also if required apply the rule of integration by-parts asyf(x).dx=yf(x)dydx(f(x)).dx\int {yf(x).dx = y\int {f(x)} - \int {\dfrac{{dy}}{{dx}}(} } \int {f(x)} ).dxhence from this concept we can get our required answer.

Complete step-by-step answer:
As the given function is as f(x)=7tan8x+7tan6x3tan4x3tan2xf(x) = 7{\tan ^8}x + 7{\tan ^6}x - 3\tan {^4}x - 3{\tan ^2}xfor all x(π2,π2)x \in ( - \dfrac{\pi }{2},\dfrac{\pi }{2})
Firstly, simplify the f(x)f\left( x \right), as per using various trigonometric formulas, so,
7tan8x+7tan6x3tan4x3tan2x\Rightarrow 7{\tan ^8}x + 7{\tan ^6}x - 3\tan {^4}x - 3{\tan ^2}x
Taking 7tan6x7{\tan ^6}xand 3tan2x3{\tan ^2}xcommon from first two terms and last two terms respectively, we get,
7tan6x(1+tan2x)3tan2x(1+tan2x)\Rightarrow 7{\tan ^6}x(1 + {\tan ^2}x) - 3{\tan ^2}x(1 + {\tan ^2}x)
Now replace 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}xin the above equation as,
7tan6x(sec2x)3tan2x(sec2x)\Rightarrow 7{\tan ^6}x({\sec ^2}x) - 3{\tan ^2}x({\sec ^2}x)
Now taking sec2x{\sec ^2}x as common we get,
(7tan6x3tan2x)(sec2x)\Rightarrow (7{\tan ^6}x - 3{\tan ^2}x)({\sec ^2}x)
Thus, now firstly calculate the integration of,
0π4f(x)dx\int\limits_0^{\dfrac{\pi }{4}} {f(x)dx} ,
On substituting the value of f(x)f\left( x \right)we get,
0π4(7tan6x3tan2x)(sec2x)dx\int\limits_0^{\dfrac{\pi }{4}} {(7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx}
Let us use the substitution method to calculate the integral of above equation as tanx=t,sec2xdx=dt\tan x = t,{\sec ^2}xdx = dt
Hence the limit will now vary as tan0=0,tanπ4=1\tan 0 = 0,\tan \dfrac{\pi }{4} = 1,
So the integration can be given as,
=01(7t63t2)dt= \int\limits_0^1 {(7{t^6} - 3{t^2})dt}
On integrating we get,
=7(t77)013(t33)01= 7(\dfrac{{{t^7}}}{7})|_0^1 - 3(\dfrac{{{t^3}}}{3})|_0^1
On simplification we get,
=t7t301= {t^7} - {t^3}|_0^1
On applying limits we get,
=10(10)= 1 - 0 - (1 - 0)
On simplification we get,

=11 =0  = 1 - 1 \\\ = 0 \\\

Hence, 0π4f(x)dx=0\int\limits_0^{\dfrac{\pi }{4}} {f(x)dx} = 0
So, option (B) will be our correct answer.
Now, check for the integration of 0π4xf(x)dx\int\limits_0^{\dfrac{\pi }{4}} {xf(x)dx} , and use the concept of by- parts for this so it will be,
I=0π4x(7tan6x3tan2x)(sec2x)dxI = \int\limits_0^{\dfrac{\pi }{4}} {x(7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx}
As we know that the integration, of known quantity is as,
f(x)dx=(7tan6x3tan2x)(sec2x)dx=tan7xtan3x+c\int {f(x)dx} = \int {(7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx} = {\tan ^7}x - {\tan ^3}x + c
So also use this in calculating the integration of 0π4xf(x)dx\int\limits_0^{\dfrac{\pi }{4}} {xf(x)dx} ,
On applying by-parts, which is uvdx=uvdxdudx(vdx)dx\int {uvdx = u\int {vdx - \int {\dfrac{{du}}{{dx}}\left( {\int v dx} \right)dx} } } , we get,
x((7tan6x3tan2x)(sec2x)dx).dx=x0π4(7tan6x3tan2x)(sec2x)dxdxdx(0π4(7tan6x3tan2x)(sec2x)dx).dx\int {x((7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx).dx = x\int\limits_0^{\dfrac{\pi }{4}} {(7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx} - \int {\dfrac{{dx}}{{dx}}(} } \int\limits_0^{\dfrac{\pi }{4}} {(7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx} ).dx
Hence after applying by parts directly we can place the value of known integration terms as,
=[x(tan7xtan3x)]0π40π41(tan7xtan3x).dx= [x({\tan ^7}x - {\tan ^3}x)]|_0^{\dfrac{\pi }{4}} - \int\limits_0^{\dfrac{\pi }{4}} {1(} {\tan ^7}x - {\tan ^3}x).dx
Hence now calculate the equation of second part of the above equation as,
I=0π41(tan7xtan3x).dxI' = - \int\limits_0^{\dfrac{\pi }{4}} {1(} {\tan ^7}x - {\tan ^3}x).dx
Taking tan3x - {\tan ^3}x, common we get,
\Rightarrow $$$$I' = \int\limits_0^{\dfrac{\pi }{4}} ( {\tan ^3}x)(1 - {\tan ^4}x).dx
Using, a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b), we get,
\Rightarrow $$$$I' = \int\limits_0^{\dfrac{\pi }{4}} ( {\tan ^3}x)(1 - {\tan ^2}x)(1 + {\tan ^2}x).dx
Now using 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x, we get,
\Rightarrow $$$$I' = \int\limits_0^{\dfrac{\pi }{4}} ( {\tan ^3}x)(1 - {\tan ^2}x)({\sec ^2}x).dx
Now, use the substitution method to solve the above integration as tanx=t,sec2xdx=dt\tan x = t,{\sec ^2}xdx = dt
Hence the limit will now vary as tan0=0,tanπ4=1\tan 0 = 0,\tan \dfrac{\pi }{4} = 1,
So, the integral can be given as
\Rightarrow $$$$I' = \int\limits_0^1 ( {\operatorname{t} ^3})(1 - {\operatorname{t} ^2})dt
On expanding we get,
I=01(t3t5)dt\Rightarrow I' = \int\limits_0^1 ( {\operatorname{t} ^3} - {\operatorname{t} ^5})dt
On integration we get,
I=t4401t6601\Rightarrow I' = \dfrac{{{\operatorname{t} ^4}}}{4}|_0^1 - \dfrac{{{\operatorname{t} ^6}}}{6}|_0^1
On applying limits we get,
I=1416\Rightarrow I' = \dfrac{1}{4} - \dfrac{1}{6}
On taking LCM and simplification we get,

I=6424 I=224 I=112  \Rightarrow I' = \dfrac{{6 - 4}}{{24}} \\\ \Rightarrow I' = \dfrac{2}{{24}} \\\ \Rightarrow I' = \dfrac{1}{{12}} \\\

Hence, so now we directly have to put all the values of various integrals in
x((7tan6x3tan2x)(sec2x)dx).dx=x0π4(7tan6x3tan2x)(sec2x)dxdxdx(0π4(7tan6x3tan2x)(sec2x)dx).dx\int {x((7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx).dx = x\int\limits_0^{\dfrac{\pi }{4}} {(7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx} - \int {\dfrac{{dx}}{{dx}}(} } \int\limits_0^{\dfrac{\pi }{4}} {(7{{\tan }^6}x - 3{{\tan }^2}x)({{\sec }^2}x)dx} ).dx
Thus,
I=[x(tan7xtan3x)]0π40π41(tan7xtan3x).dxI = [x({\tan ^7}x - {\tan ^3}x)]|_0^{\dfrac{\pi }{4}} - \int\limits_0^{\dfrac{\pi }{4}} {1(} {\tan ^7}x - {\tan ^3}x).dx
On substituting the values we get,

I=π4((11)0)+112 I=112  \Rightarrow I = \dfrac{\pi }{4}((1 - 1) - 0) + \dfrac{1}{{12}} \\\ \Rightarrow I = \dfrac{1}{{12}} \\\

Hence, option (A) and option (B) both are correct answers.

Note: In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative.
Calculate and apply the property of integration as substitution and by parts rule carefully, also change the limit value also changing the substitution.