Solveeit Logo

Question

Mathematics Question on types of functions

If f(x)=(2k+1)x3kex+2exf(x)=(2k + 1)x - 3 - ke^{-x } + 2e^x is monotonically increasing for all xRx \in R, then the least value of kk is

A

1

B

0

C

12 - \frac{1}{2}

D

-1

Answer

0

Explanation

Solution

Given,
f(x)=(2k+1)x3kex+2exf(x)=(2 k+1) x-3-k e^{-x}+2 e^{x}
Since, f(x)f(x) is monotonically increasing for all xR.x \in R .
So, f(x)0 f'(x) \geq 0
(2k+1)+kex+2ex0(2 k+1)+k e^{-x}+2 e^{x} \geq 0
ex((2k+1)ex+k+2e2x)0\Rightarrow e^{-x}\left((2 k+1) e^{x}+k+2 e^{2 x}\right) \geq 0
or (2k+1)ex+k+2e2x0 (2 k+1) e^{x}+k+2 e^{2 x} \geq 0
2ex(ex+k)+l(ex+k)0\Rightarrow 2 e^{x}\left(e^{x}+k\right)+ l \left(e^{x}+k\right) \geq 0
(2ex+1)(ex+k)0\Rightarrow \left(2 e^{x}+1\right)\left(e^{x}+k\right) \geq 0
ex+k0\Rightarrow e^{x}+k \geq 0 or k0 k \geq 0
Hence, least value of kk is zero.